• Title/Summary/Keyword: 2-metric spaces

Search Result 159, Processing Time 0.02 seconds

ON THE EXISTENCE OF SOLUTIONS FOR SOME VARIATIONAL-LIKE INEQUALITIES

  • Lee, Byung-Soo;Jung, Jong-Soo
    • Communications of the Korean Mathematical Society
    • /
    • v.14 no.2
    • /
    • pp.319-328
    • /
    • 1999
  • In this paper we consider a kind of Minty`s lemma for multifunctions in Banach spaces, and apply it to obtain existence theorems for two kinds of variational-like inequalities using the KKM-Fan theorem.

  • PDF

ON THE FINSLER SPACES WITH f-STRUCTURE

  • Park, Hong-Suh;Lee, Il-Yong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.217-224
    • /
    • 1999
  • In this paper the properties of the Finsler metrics compatible with an f-structure are investigated.

  • PDF

A CHARACTERIZATION OF WEIGHTED BERGMAN-PRIVALOV SPACES ON THE UNIT BALL OF Cn

  • Matsugu, Yasuo;Miyazawa, Jun;Ueki, Sei-Ichiro
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.5
    • /
    • pp.783-800
    • /
    • 2002
  • Let B denote the unit ball in $C^n$, and ν the normalized Lebesgue measure on B. For $\alpha$ > -1, define $dv_\alpha$(z) = $c_\alpha$$(1-\midz\mid^2)^{\alpha}$dν(z), z $\in$ B. Here $c_\alpha$ is a positive constant such that $v_\alpha$(B) = 1. Let H(B) denote the space of all holomorphic functions in B. For $p\geq1$, define the Bergman-Privalov space $(AN)^{p}(v_\alpha)$ by $(AN)^{p}(v_\alpha)$ = ${f\inH(B)$ : $\int_B{log(1+\midf\mid)}^pdv_\alpha\;<\;\infty}$ In this paper we prove that a function $f\inH(B)$ is in $(AN)^{p}$$(v_\alpha)$ if and only if $(1+\midf\mid)^{-2}{log(1+\midf\mid)}^{p-2}\mid\nablaf\mid^2\;\epsilon\;L^1(v_\alpha)$ in the case 1<p<$\infty$, or $(1+\midf\mid)^{-2}\midf\mid^{-1}\mid{\nabla}f\mid^2\;\epsilon\;L^1(v_\alpha)$ in the case p = 1, where $nabla$f is the gradient of f with respect to the Bergman metric on B. This is an analogous result to the characterization of the Hardy spaces by M. Stoll [18] and that of the Bergman spaces by C. Ouyang-W. Yang-R. Zhao [13].

ON THE C-PROJECTIVE VECTOR FIELDS ON RANDERS SPACES

  • Rafie-Rad, Mehdi;Shirafkan, Azadeh
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.4
    • /
    • pp.1005-1018
    • /
    • 2020
  • A characterization of the C-projective vector fields on a Randers space is presented in terms of 𝚵-curvature. It is proved that the 𝚵-curvature is invariant for C-projective vector fields. The dimension of the algebra of the C-projective vector fields on an n-dimensional Randers space is at most n(n + 2). The generalized Funk metrics on the n-dimensional Euclidean unit ball 𝔹n(1) are shown to be explicit examples of the Randers metrics with a C-projective algebra of maximum dimension n(n+2). Then, it is also proved that an n-dimensional Randers space has a C-projective algebra of maximum dimension n(n + 2) if and only if it is locally Minkowskian or (up to re-scaling) locally isometric to the generalized Funk metric. A new projective invariant is also introduced.