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A STUDY ON THE SET-VALUED DISCRETE
DYNAMICAL SYSTEM (2%, f)

Kyung BokK LEE*

ABSTRACT. This paper is devoted to some dynamical properties
such as transitivity, mixing and specification of two discrete dy-
namical systems (X, f) and (2%, f) on compact metric spaces.

1. Introduction and backgrounds

S. Li [4] proved that the shift map o : @(X, f) (—)I'%H(X, f) in-
duced by a continuous map f on a compact metric space X is chaotic in
the sense of Devaney if and only if (X, f) is chaotic in the sense of De-
vaney. Moreover, Roman-Flore [6] showed that the Devaney’s chaoticity
of (X, f) implies the Devaney’s chaoticity of the set-valued dynamical
system (2%, f), and gave a question whether the converse of the state-
ment in true or not.

In this paper we give a partial answer about the above question, and
study some relationship between two dynamics of (X, f) and (2%, f).
More precisely, we show that if Devaney chaotic and weak mixing then
f is Devaney chaotic; f is strong [resp. mild] mixing if and only if f is
strong [resp. mild] mixing , respectively; f is has a specification [resp.
Property P] if and only if f has specification. [Property P], respectively.

We start with the definition of Devaney chaos. Let (X, d) be a
compact metric space and f : X — X be a continuous map. A map
f is called to be Devaney chaotic [2] if f satisfies the following three
conditions.

(1) fis transitive that is for every pair U, V of non-empty open subsets
of X there is a positive integer n such that f*(U) NV # 0.
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(2) f is periodically dense that is the set of periodic points of f is
dense in X.

(3) f has sensitive dependence on initial conditions that is there exists
a 0 > 0 such that for any = € X, there exist a sequence (zy) in X

and a sequence (ny) of positive integers such that limg_,oo 2 = x
and d(f™(x), f™(x)) > 6 for all k.

2. Preliminaries

In this paper, we will investigate the relationships between the mixing
property of (2%, f) and the mixing property of (X, f). In addition, we
discuss totally transitivity and specification for the set-valued discrete
dynamical system (2%, f).

For a compact metric space (X, d), let 2% be the family of all non-
empty compact subsets of X. A metric H on 2% is defined as follows:

DEFINITION 2.1. If € > 0 and A € 2%, then

N(A, €) ={x € X|d(z, a) < e for some a € A}.
If A, B € 2%, then define
H(A, B) =inf{e > 0|A C N(B, ¢) and B C N(A, €)}.
In fact, as will be proved in Theorem 2.2, H is a metric on 2¥X. It will
be called the Hausdorff metric induced by d.

THEOREM 2.2. The function H : 2X x 2X — [0, o) is a metric on
2%,

Proof. We will prove the triangle inequality. Let A, B, C € 2X. We
will show that

(*) H(A, C) < H(A, B)+ H(B, C).
To prove (*), let n > 0 and let § = /2. From the definition of H we

see that

(1) AC N(B, H(A, B)+9), and
(2) BC N(C, H(B, C)+9).

Let a € A. By (1), there exists b € B such that
(3) d(a, b) < H(A, B)+9.

By (2), there exists ¢ € C such that
(4) d(b, ¢) < H(B, C)+ 0.
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Using (3), (4), and the definition of 4, it follows easily that
d(a, ¢) < H(A, B)+ H(B, C)+n.
Therefore, since a was an arbitrary point of A, we have proved that
(5) AC N(C, H(A, B)+ H(B, C)+n).
A similar argument shows that
(6) CC N(A, H(A, B)+ H(B, C)+n).
Since n was an arbitrary positive number, it follows from (5), (6), and

the definition of H(A, C) that (*) holds. This completes the proof of
Theorem 2.2. O

DEFINITION 2.3. Let (A,) be a sequence in 2. Then define
liminf A, = {x € X| if U is a neighborhood of z, then U N A,, # ()
for all but finitely many n}
limsup 4, = {z € X| if U is a neighborhood of z, then U N A4,, # ()
for infinitely many n}
If liminf A,, = A = limsup A,, then we say that the sequence (A,)
converges to A, written lim, .o, A, = A.

REMARK 2.4. Let (A,) be a sequence in 2%. As is easy to verify :

(1) liminf 4,, C limsup A4,,.
(2) liminf A,, and limsup A,, are each closed subsets of X.
(3) If (A,,) is a subsequence of (A,,), then

liminf A,, C liminf A4,,, and limsup A,,, C limsup A4,,.

THEOREM 2.5. Let (A,) be a sequence in 2X. If (A,) converges to
A in the sense of Definition 2.3, then A € 2% and (A,) converges to A
with respect to the Hausdorff metric. Conversely, if (A,) converges with
respect to the Hausdorff metric to A, then (A,) converges to A in the
sense of Definition 2.3.

Proof. First assume (A,,) converges to A in the sense of Definition 2.3.
Since X is compact and each A, # 0, it follows that limsup A4,, # 0.
Thus, since A = limsup 4,, we have that A # (). Also, by Remark 2.4,
A is a compact subset of X. Hence A € 2X. Now we show that (4,)
converges to A with respect to the Hausdorff metric. Let € > 0. Note
that

(1) limsup A,, = A C Ny(A, €)
and that, since Ny(A, €) is an open subset of X,
(2) the complement of Ny(A, €) is a compact subset of X.
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Using (1), (2), and Remark 2.4, it follows that there exists a natural
number N such that

(3) A, C Ny(A, e) for each n > Njy.
Since A is a non-empty compact subset of X, there exist a finite

number of open subsets Uy, ---, Ug of X such that A C UleUi, the
diameter of each U; is less than €, and U;N A # () for each i =1, --- | k.
Then, since A = liminf A,,, there exists for each ¢« = 1, ---, k a
natural number M; such that A, N U; # () whenever n > M;. Let
Ny = max{Mi, ---, My}. It is easy to verify that

(4) A C Nyg(A,, €) for each n > Nj.

Let N = max{Ni, Na}. Then, by (3), (4), and the definition of H we
see that H(A, A,) < € for each n > N. Therefore we have proved that
(A,) converges to A with respect to the Hausdorff metric. This proves
half of Theorem. To prove the other half, assume (A,) converges to an
A € 2% with respect to the Hausdorff metric. We first show that

(5) limsup A4,, C A.

To verify (5), let € > 0. Since (A,) converges to A with respect
to the Hausdorff metric, there exists a natural number N such that
H(A, A,) < € for each n > N. This implies that no point of limsup A,
can be more that € from every pont of A. Therefore, since ¢ > 0 was
arbitrary, we have proved (5). Next we show that

(6) A C liminf A,,.

To verify (6), let € > 0. Let ap € A and let U = Ny(ap, €). Since
(A;,) converges to A with respect to the Hausdorff metric, there exists a
natural number N such that H(A, A,) < e for each n > N. Hence, by
the definition of H, we have that A C Ny(A,, €) for each n > N. Thus
UnN A, # 0 for each n > N. Therefore, since € > 0 was arbitrary,

ap € liminf A,,.

This proves (6). Combining (5) and (6) and using Remark 2.4, we see
that (A,) converges to A in the sense of Definition 2.3. O

THEOREM 2.6. The space 2% is compact.

Proof. To prove that 2% is compact, it suffices by Theorem 2.5 to
show that every sequence in 2% has a convergent subsequence in the
sense of Definition 2.3. To do this, let (A,) be a sequence in 2%. We
define sequences

(ALy . Al AL ... AL
(A2) . A3 A3 ... A2 ...
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(AZ) : A7117 Ag? Ty AZ,

inductively as follows. Let 5 = {U,} be a countable basis for X. Define
(AL) by AL = A, for each n = 1, 2, ---. Assume inductively that we
have defined the sequence (A¥). We define (A%*1!) in one of the following
two ways :

(1) If (A¥) has a subsequence (AF ) such that (limsup A% ) N U, =0,
then let (A**1) be one such subsequence of (AF).

(2) If every subsequence of (A%) has a point of its limsup in Uy, then
let (AF+1) be given by ATt = AF for each n =1, 2, ---.

Now, having defined the sequence (A¥) for each k =1, 2, -, consider
the 'diagonal sequence’ (A}}). Clearly (A}}) is a subsequence of (4,,), and
we will show it converges. Suppose (A}') does not converges. Then, by
Remark 2.4, there exists a point p € limsup A" such that p ¢ liminf A}
Hence, there exists U,,, €  such that p € U,, and such that UmﬂAgj =0
for some subsequence (A1) of (A}). Clearly (A7) is a subsequence of
(A™). Thus (A]") satisfies (1) above. Hence

(limsup A N U, = 0.

Therefore, since (A1)22, ., is a subsequence of (A7), it follows us-
ing Remark 2.4 that (limsup A}Y)NU,, = 0. But, since p € (limsup A7)N

Un, we have a contradiction. Therefore (A]') converges. This completes

the proof of Theorem. O
For any finite non-empty open subsets Uy, ---, U, of X, let
<Up, ~, Uy>={Ae2X |ACc U U;and ANU; #0

for all 1 <i <n}.

THEOREM 2.7. Let (X, d) be a compact metric space. Then the set

B of all subsets of 2% of the form < Uy, ---, U, > is a basis for 2¥.
Proof. First we show that < Uy, ---, U, > is an open subset of 2%.
Let
Ae<Uy, -+, U, >.
Then A C U ,U;. For eachi =1, ---, n, since ANU; # 0, we can

choose a point a; € AN U;. There exists € > 0 such that

Na(A, €) Cc U U; and Ng(a;, €) C U for all 1 <i <n.
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Let B € Ny(A, €). Then B C Ny(A, €¢) C U, U;. For each i =
1, ---, n, since
a; € AC Nd(B, 6),
there is a point b; € B such that d(a;, b;) < €. Since b; € Ny(a;, €) C U;
we have

BNU;#(foralll<:<n.

Thus B €< Uy, ---, U, > so Ng(A, ¢) c< Uy, ---, U, >. Hence
< Ui, ---, U, >is an open subset of 2¥.

Next we show that 3 is a basis for 2%X. Let a be an open subset of 2.
Given any A € «, there exists € > 0 such that Ny (A, €) C a. Since A

is compact, there exist finitely many points a1, ---, a, of A such that
AcC U Ny (a %)

Clearly, A €< Ng(a1, §), ---, Nalan, §) >. Let B €< Ny(a1,
£), -+, Na(an, §) >. For any b € B, since B C Uj_; Ng(a;, 5), there
exists ¢ such that b € Ng(a;, 5). Thus

Bc Ny (A, %)

For any a € A, there exists i such that a € Ng(a;, §), that is,
d(a;, a) < 5. Since

Bn Nd(ai, %) £,

we can choose a point b € B such that d(a;, b) < 5. Then we have

2

£
3
€

€
< ; : S 4o =Ze
d(a, b) <d(a, a;) +d(a;, b) < 3 + 3 = 3¢
Thus A C Ng(B, 2¢). Hence H(A, B) < 2¢ < € so we get
Ae< Nd<a1, %), e Nd<an, g) >C Ny (A, €) C a.
Therefore 3 is a basis for 2X. O

If f: X — X is a continuous map then by f(A4) = {f(a)|a € A} for
every A € 2% one defines a continuous map f : 2X — 2%,

A map f: X — X is called to be totally transitive if f*: X — X is
transitive for every positive integer n. A map f: X — X is called to be
weak mizing if the product map f x f: X x X — X x X is transitive,
and f is strong mizing if for any two non-empty open subsets U, V of
X there is a positive integer NV such that

 O)NV #£0
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for every integer n > N.

In [8], Xiong and Yang investigated the chaos caused by a mixing
map and revealed a kind of quite complex phenomenon.

A map f: X — X is called to be weakly chaotic in the sense of Xiong
if there is a c—dense F,—-subset C' of X such that for any subset A of
C and any continuous map F': A — X there is an increasing positive
integer sequence (py,) such that

lim fP(x) = F(x)

n—oo
for each x € A. f is called to be chaotic in the sense of Xiong if for
any given increasing positive integer sequence (py) there is a c—dense
F,-subset C of X such that for any subset A of C and any continu-
ous map F': A — X there is a subsequence (p,,) of (p,) such that
lim; o0 fPri(z) = F(z) for each z € A.

3. Mixing and transivity

Let A be a subset of X. Then we define the extension of A to 2% as
e(A) = {K € 2X|K c A}
The following lemma is cited from [6].

LEmMA 3.1. IfU is a non-empty open subset of X, then
) e(U) # 0 if and only if U # 0.

) e(U) is a non-empty open subset of 2.
) e(UNV)=eU)Ne(V).

) = f7 for all positive integer n.

)

(e(U)) C e(f(U)).
In [7], Shao studied the double properties and family versions of mix-
ing.

THEOREM 3.2. [7] Let X be a compact metric space and f : X — X
be a continuous map. Then the following conditions are equivalent.

(1) f is weak mixing.

(2) f is weak mixing.

(3) f is transitive.

REMARK 3.3. [6] Roman-Flores showed that f transitive implies f
transitive. Hence, Theorem 3.2 generalizes the result of Roman-Flores.
In addition, the theorem shows that the concepts of weak mixing and
transitivity coincide for the set-valued discrete dynamical system (2%, f).
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Devaney’s chaoticity of f does not imply Devaney’s chaoticity of f
as shown by the following example.

EXAMPLE 3.4. Let X = {0, 1} be a discrete space and f : X —
X be a continuous map with f(0) = 1 and f(1) = 0. Clearly, f is
transitive and periodically dense. so f is Devaney chaotic. Since 2% =
{{o}, {1}, {0, 1}} is a discrete space with two periodic orbits, f is not
Devaney chaotic.

However, we have the following result.

THEOREM 3.5. Let X be a compact metric space and f : X — X be
a continuous map. If f is Devaney chaotic and weak mixing, then f is
Devaney chaotic.

Proof. By Theorem 3.2, it is necessary to prove that if Per(f) is dense
in X then Per(f) is dense in 2%, where Per(f) is the set of periodic
points of f.

In fact, let a be a non-empty open subset of 2%. We choose non-

empty open subsets Uy, ---, U of X such that
<Uy, -+, U, >Ca.
Since Per(f) is dense in X, there are periodic points p;, ---, pg of f
such that p; € U for every i =1, ---, k. Let A= {p1, ---, px}. Then
A€ Per(f)and Ae< Uy, -+, Uy >C .
This shows that Per(f) is dense in 2%. O

THEOREM 3.6. Let X be a compact metric space and f : X — X be
a continuous map. Then the following conditions are equivalent.

(1) f is strong mixing.
(2) f is strong mixing.

Proof. (1)=(2): Suppose that f is strong mixing. Let U, V be any
two non-empty open subsets of X. Since e(U), e(V) are non-empty
open subsets of 2%, there is a positive integer N such that

Fie(@)ne(V) #0 for all n > N.
By Lemma 3.1, we have

fle)ne(V) Ce(f*(U))Ne(V) =e(f*(U)NV).
Thus

fMU)NV #£0 for all n > N.
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This shows that f is strong mixing.
(2)=-(1): Suppose that f is strong mixing. Let o and  be any two
non-empty open subsets of 2X. We choose non-empty open subsets

Uy, -, U, Vi, =+, Vi
of X such that
<Up, -+, U>Caand < Vy, -+, Vi >CB.
For each i =1, .-+, k, since f is strong mixing, there exists a positive

integer IV; such that
fM(U;)NV; # 0 for all n > N;.

Let N = max{Ny, ---, Ni}. For every integer n > N, since f™(U;) N
Vi # 0, there is a point z; € U; such that f™(z;) € V;. Let A =
{x1, ---, 23}. Then A € 2% and

Ae<Uy, -+, Uy>Caand f(A) e<Vy, -+, Vi >C 8.

Thus fn(a) NB # O for all n > N. This shows that f is strong
mixing. O

THEOREM 3.7. Let X be a compact metric space and f : X — X be
a continuous map. Then the following conditions are equivalent.

(1) f is mild mixing.
(2) f is mild mixing.

Proof. (1)=(2): Suppose that f is mild mixing. For any transitive
dynamical system (Y, g), we will show that (X xY, fxg) is a transitive
dynamical system.

Let Uy x V; and Us x V5 be two non-empty open subsets of X x Y.
Then e(U;) x Vi and e(Usz) x V, are two non-empty open subsets of
2X x Y. Since f x g is transitive, there are a positive integer n and a
point (A, y) € e(U1) x Vi such that

(F x 9)"(A, y) = (F(A),9"(v)) € e(Ua) x Va.
We pick a point © € A € U;. Then f*(z) € f (A) € Us. Thus
(z, y) € Uy x V; and
(f x9)"(z, y) = (f"(x), 9" (y)) € U2 x V3.

Hence (X x Y, f X g) is a transitive dynamical system. This shows
that f is mild mixing.
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(2)=(1): Suppose that f is mild mixing. For any transitive dynamical
system (Y, g), we will show that (2X xY, fxg) is a transitive dynamical
system.

Let a; x V4 and as x Vo be two non-empty open subsets of 2X x Y.

Then there are non-empty open subsets Ull, cee U,i, U127 cee U,f of
X such that
<UL, -, Ul >Cajand <UZ, -+, U} >C as.

Since f is mild mixing, (X x Y, f X g) is a transitive dynamical
system. By using the induction, we get that

(XF %Y, fx-x fxg)
is a transitive dynamical system. Thus, for two non-empty open subsets
Ul x -+ xUlxViand UZ x -+ x U2 x Vs
of X* x Y, there are a positive integer n and a point
(1, -, g, y) EUL x - x Ul x W

such that

(fx-ox fxg)(@n, -y mp y) = (1), -5 (), 9" (1Y)

cUE X - X Ut x Va.

Thus f(x;) € U? for every i = 1, ---, k and g"(y) € Va. Let A =
{z1, ---, zr}. Then

Ae<U}, -, U >Cajand f'(A) €< U}, -, U} >C as.
Hence

(A, y) € a1 x Vi and (f'(A), g"(y)) = (f x 9)"(4, y) € az x V.

Therefore (2X x Y, f x g) is a transitive dynamical system. This shows
that f is mild mixing. O
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4. Specification and totally transitivity

DEFINITION 4.1. A map f : X — X is called to have specification
if for any positive number € there is a positive number M (¢) such that
for any integer k > 2 and any k points z1, ---, x of X, and any 2k
non-negative integers

a1§b1<a2§b2<~-<ak§bk
with a; — b;—1 > M(e) for each i = 2, --- | k there is a point = of X
satisfying
d(f"(z), f"(zi)) <e

for every n =a;, -+, b; and every t =2, --- | k.

THEOREM 4.2. Let X be a compact metric space and f : X — X be
a continuous map. Then the following conditions are equivalent.

(1) f has specification.

(2) f has specification.

Proof. (1)=(2): Suppose that f has specification. Let € > 0 and let
M = M (e€) be a positive number as in the definition of specification for
f. For any integer k > 2, we take any k points =1, ---, x, of X and
any 2k non-negative integers

a1 <bp<as<by<---<a<b

with a; — bj—1 > M for every i =2, ---, k. We denote A; = {z;} for
eachi=1, ---, k, then Ay, ---, A, € 2X. Since f has specification,
there is a point A of 2% such that

H(f"(A), ['(A) <e

foraln=a;, ---, bjand alli=1, ---, k. Since

T (A) S N (4), ) = N(f"(@i), e),

we pick a point z € A, then we have

d(f"(x), f"(zi)) <e
foralln=a;, ---, bjand alli=1, ---, k. Thus f has specification.
(2)=-(1): Suppose that f has specification. Let ¢ > 0 and let M =
M(5) be a positive number as in the definition of specification for f.

For any integer k > 2, we take any k points Aq, ---, Ay of 2%X and any
2k non-negative integers

a1§b1<a2§b2<---<ak§bk
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with a; — by > M for every i = 2, ---, k. Since f, ---, f% are
uniformly continuous, there exists a § > 0 such that

d(z, y) < § implies d(f*(z), f'(y)) < §

foralli =0, 1, ---, bg. Foreachi =1, --- | k, {N(x, d)|z € A;} is
an open cover of A Slnce A; is compact, there are finitely many points

xh T, of A; such that
A; C U N (2, 6).
Fork:pointsmt,---,xtkowaherel gmiandlgigk,
since f has specification, there is a point z(¢y, ---, tx) of X such that
A(f (b, o 0), f(@,) < g
foraln=a;, ---, bjand alli=1, ---, k. Let
A={a(ty, -, M1 <i<k, 1<t <my).
Then A€ 2X. Leti=1, ---, kand 1 <t; < m,;. Since
Al s ), TAD) < A Geler, oo ), M) < 5,
we have
I e N (7). 5)
for all n = a;, ---, b;. Given any x € A;, there exists a t; such that

x € N(zj, 6). Since d(z}, x) < &, we have d(f"(x},), f"(z)) < § for
all n =a;, ---, b;. Choose any

t1, o0y tic1, tig1, o0, Tk
then we have
d(f™(z), f(A) <d(f™(x), fH(x(t, -, t)
<d(f"(=), f”(ﬂfil))er(f"(xt) @ty o tr))
€ € 2
< g + g = gé
Thus f(A;) € N(f"(A), 2e. Hence
H(f"(A), ["(Ai) < Ze<e

for all i = a;, ---, b;. Therefore f has specification. O
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In [1], Bowen introduced the concept of Property P to characterize
chaotic phenomenon of flow with the specification property.

A map f: X — X is called to have Property P if for any two non-
empty open subsets Uy, Us of X there exists a positive integer N such

that, for any integer & > 2 and any s = (s(1), s(2), ---, s(k)) € {1, 2}*
there is a point x of X satisfying
x € Uy, [N (2) € Uy , FEDN() € Uy

THEOREM 4.3. [9] Let X be a compact metric space and f : X — X
be a continuous map. If f has Property P then f is weak mixing.

THEOREM 4.4. Let X be a compact metric space and f : X — X be
a continuous map. Then the following conditions are equivalent.
(1) f has Property P.
(2) f has Property P.

Proof. (1)=(2): Suppose that f has Property P. Let U; and Us
be any two non-empty open subsets of X. By Lemma 3.1, ¢(U;) and
e(Us) are non-empty open subsets of 2%. Since f has Property P, there
is a positive integer N such that, for any integer k£ > 2 and any s =

(s(1), s(2), ---, s(k)) € {1, 2}*, there is a point A of 2% satisfying
=N (k—1)N
A eUy), T (A) € eUy), -+ TN (A) € eUyge).
Thus we have
—=N —(k—=1)N

AC U5(1)7 f (A) € Us(2 e f ( ) C Us(k)
Picking a point x € A, then we have

x € Ugry, [N (2) € Uy , FEDN() € Uy

Hence f has Property P.

(2)=(1): Suppose that f has Property P. Let a;, g be any two non-
empty open subsets of 2X. Choose open subsets U}, ---, UL, U2, ---, U2,
of X such that

<UL, -, Ul >Cajand <UZ, -, U2 >C as.

Since f has Property P, for two non-empty open subsets U} and U? of
X there is a positive integer N; such that for any integer k; > 2 and any

§ = (5(1)7 8(2)’ Tt S(kl)) € {1’ 2}’%?

there is a point x; of X satisfying

2 e UV, i) e Uf® o phim DN gy e etk
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Let N denote the least common multiple of N1, Na, ---, N,,. For
any integer k > 2 and any s = (s(1), s(2), ---, s(k)) € {1, 2}*, we
denote

_ N 1, 2
pl Nl’ 1= b b ) m
and
§= (8(1)7 R 5(1)> 8(2)7 T 8(2)7 R S(k)a ) S(k)) € {17 2}kpi'
Then there is a point y; of X such that
Yi € UZ‘S(l)) f]VZ (yz) € UiS(l)u Ty f(pl_l)Nl(y’L) € UZ‘S(l)
N s(2 . . s(2 o ) s(2
FriNi(y;) € U, pot DNy e U7 oo penm DNy € U ®)

FE=DPNi () € PP p(R=DpitDNi () € ™) L

Thus we have

v € U7, M) € UF, o p 0N () e TP,
Let A= {y1, ¥2, *-, Ym}. Then A € 2X and
Ac< Uf(l), UZS(U, e U s (1)
7)) e<u®, 3@, U >c Qs(2)
T(k_l)N(A) €< Uf(k), Uj(k), N N (k-
Hence f has Property P. O

Finally, we discuss totally transitivity.

THEOREM 4.5. Let X be a compact metric space and f : X — X be
a continuous map. If f is totally transitive, then so is f. However, the
converse is not true.

__ Proof. Since f is totally transitive, for every positive integer k, ?k =
f¥ is transitive. By Theorem 3.6 of [6], f* is transitive. Thus f is totally
transitive. O

In general, the converse of Theorem 4.5 is not true.
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