JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **30**, No. 3, August 2017 http://dx.doi.org/10.14403/jcms.2017.30.3.341

A STUDY ON THE SET-VALUED DISCRETE DYNAMICAL SYSTEM $(2^X, \overline{f})$

Kyung Bok Lee*

ABSTRACT. This paper is devoted to some dynamical properties such as transitivity, mixing and specification of two discrete dynamical systems (X, f) and $(2^X, \overline{f})$ on compact metric spaces.

1. Introduction and backgrounds

S. Li [4] proved that the shift map $\sigma_f : \lim_{X \to 0} (X, f) \leftarrow \lim_{X \to 0} (X, f)$ induced by a continuous map f on a compact metric space X is chaotic in the sense of Devaney if and only if (X, f) is chaotic in the sense of Devaney. Moreover, Roman-Flore [6] showed that the Devaney's chaoticity of (X, f) implies the Devaney's chaoticity of the set-valued dynamical system $(2^X, \overline{f})$, and gave a question whether the converse of the statement in true or not.

In this paper we give a partial answer about the above question, and study some relationship between two dynamics of (X, f) and $(2^X, \overline{f})$. More precisely, we show that if Devaney chaotic and weak mixing then \overline{f} is Devaney chaotic; f is strong [resp. mild] mixing if and only if \overline{f} is strong [resp. mild] mixing , respectively; f is has a specification [resp. Property P] if and only if \overline{f} has specification. [Property P], respectively.

We start with the definition of Devaney chaos. Let (X, d) be a compact metric space and $f : X \to X$ be a continuous map. A map f is called to be *Devaney chaotic* [2] if f satisfies the following three conditions.

(1) f is transitive that is for every pair U, V of non-empty open subsets of X there is a positive integer n such that $f^n(U) \cap V \neq \emptyset$.

2010 Mathematics Subject Classification: Primary 37B40.

Received May 31, 2017; Accepted July 24, 2017.

Key words and phrases: set-valued discrete dynamical systems, Deveney's chaoticity, mixing, specification.

- (2) f is *periodically dense* that is the set of periodic points of f is dense in X.
- (3) f has sensitive dependence on initial conditions that is there exists a $\delta > 0$ such that for any $x \in X$, there exist a sequence (x_k) in Xand a sequence (n_k) of positive integers such that $\lim_{k\to\infty} x_k = x$ and $d(f^{n_k}(x), f^{n_k}(x_k)) \geq \delta$ for all k.

2. Preliminaries

In this paper, we will investigate the relationships between the mixing property of $(2^X, \overline{f})$ and the mixing property of (X, f). In addition, we discuss totally transitivity and specification for the set-valued discrete dynamical system $(2^X, \overline{f})$.

For a compact metric space (X, d), let 2^X be the family of all nonempty compact subsets of X. A metric H on 2^X is defined as follows:

DEFINITION 2.1. If $\epsilon > 0$ and $A \in 2^X$, then

 $N(A, \epsilon) = \{ x \in X | d(x, a) < \epsilon \text{ for some } a \in A \}.$

If $A, B \in 2^X$, then define

 $H(A, B) = \inf\{\epsilon > 0 | A \subset N(B, \epsilon) \text{ and } B \subset N(A, \epsilon)\}.$

In fact, as will be proved in Theorem 2.2, H is a metric on 2^X . It will be called the *Hausdorff metric* induced by d.

THEOREM 2.2. The function $H: 2^X \times 2^X \to [0, \infty)$ is a metric on 2^X .

Proof. We will prove the triangle inequality. Let A, B, $C \in 2^X$. We will show that

(*) $H(A, C) \le H(A, B) + H(B, C).$

To prove (*), let $\eta > 0$ and let $\delta = \eta/2$. From the definition of H we see that

(1) $A \subset N(B, H(A, B) + \delta)$, and

(2) $B \subset N(C, H(B, C) + \delta).$

Let $a \in A$. By (1), there exists $b \in B$ such that

(3) $d(a, b) < H(A, B) + \delta$.

By (2), there exists $c \in C$ such that

(4) $d(b, c) < H(B, C) + \delta$.

A study on the set-valued discrete dynamical system $(2^X, \overline{f})$

Using (3), (4), and the definition of δ , it follows easily that

$$d(a, c) < H(A, B) + H(B, C) + \eta.$$

Therefore, since a was an arbitrary point of A, we have proved that

(5) $A \subset N(C, H(A, B) + H(B, C) + \eta).$

A similar argument shows that

(6) $C \subset N(A, H(A, B) + H(B, C) + \eta).$

Since η was an arbitrary positive number, it follows from (5), (6), and the definition of H(A, C) that (*) holds. This completes the proof of Theorem 2.2.

DEFINITION 2.3. Let (A_n) be a sequence in 2^X . Then define

 $\liminf A_n = \{x \in X | \text{ if } U \text{ is a neighborhood of } x, \text{ then } U \cap A_n \neq \emptyset$ for all but finitely many n}

 $\limsup A_n = \{x \in X | \text{ if } U \text{ is a neighborhood of } x, \text{ then } U \cap A_n \neq \emptyset$ for infinitely many $n\}$

If $\liminf A_n = A = \limsup A_n$, then we say that the sequence (A_n) converges to A, written $\lim_{n\to\infty} A_n = A$.

REMARK 2.4. Let (A_n) be a sequence in 2^X . As is easy to verify :

- (1) $\liminf A_n \subset \limsup A_n$.
- (2) $\liminf A_n$ and $\limsup A_n$ are each closed subsets of X.
- (3) If (A_{n_i}) is a subsequence of (A_n) , then lim inf $A_n \subset \liminf A_{n_i}$ and $\limsup A_{n_i} \subset \limsup A_n$.

THEOREM 2.5. Let (A_n) be a sequence in 2^X . If (A_n) converges to A in the sense of Definition 2.3, then $A \in 2^X$ and (A_n) converges to A with respect to the Hausdorff metric. Conversely, if (A_n) converges with respect to the Hausdorff metric to A, then (A_n) converges to A in the sense of Definition 2.3.

Proof. First assume (A_n) converges to A in the sense of Definition 2.3. Since X is compact and each $A_n \neq \emptyset$, it follows that $\limsup A_n \neq \emptyset$. Thus, since $A = \limsup A_n$, we have that $A \neq \emptyset$. Also, by Remark 2.4, A is a compact subset of X. Hence $A \in 2^X$. Now we show that (A_n) converges to A with respect to the Hausdorff metric. Let $\epsilon > 0$. Note that

(1) $\limsup A_n = A \subset N_d(A, \epsilon)$

and that, since $N_d(A, \epsilon)$ is an open subset of X,

(2) the complement of $N_d(A, \epsilon)$ is a compact subset of X.

Using (1), (2), and Remark 2.4, it follows that there exists a natural number N_1 such that

(3) $A_n \subset N_d(A, \epsilon)$ for each $n \ge N_1$.

Since A is a non-empty compact subset of X, there exist a finite number of open subsets U_1, \dots, U_k of X such that $A \subset \bigcup_{i=1}^k U_i$, the diameter of each U_i is less than ϵ , and $U_i \cap A \neq \emptyset$ for each $i = 1, \dots, k$. Then, since $A = \liminf A_n$, there exists for each $i = 1, \dots, k$ a natural number M_i such that $A_n \cap U_i \neq \emptyset$ whenever $n \geq M_i$. Let $N_2 = \max\{M_1, \dots, M_k\}$. It is easy to verify that

(4) $A \subset N_d(A_n, \epsilon)$ for each $n \ge N_2$.

Let $N = \max\{N_1, N_2\}$. Then, by (3), (4), and the definition of H we see that $H(A, A_n) < \epsilon$ for each $n \ge N$. Therefore we have proved that (A_n) converges to A with respect to the Hausdorff metric. This proves half of Theorem. To prove the other half, assume (A_n) converges to an $A \in 2^X$ with respect to the Hausdorff metric. We first show that

(5) $\limsup A_n \subset A$.

To verify (5), let $\epsilon > 0$. Since (A_n) converges to A with respect to the Hausdorff metric, there exists a natural number N such that $H(A, A_n) < \epsilon$ for each $n \ge N$. This implies that no point of $\limsup A_n$ can be more that ϵ from every point of A. Therefore, since $\epsilon > 0$ was arbitrary, we have proved (5). Next we show that

(6) $A \subset \liminf A_n$.

To verify (6), let $\epsilon > 0$. Let $a_0 \in A$ and let $U = N_d(a_0, \epsilon)$. Since (A_n) converges to A with respect to the Hausdorff metric, there exists a natural number N such that $H(A, A_n) < \epsilon$ for each $n \ge N$. Hence, by the definition of H, we have that $A \subset N_d(A_n, \epsilon)$ for each $n \ge N$. Thus $U \cap A_n \neq \emptyset$ for each $n \ge N$. Therefore, since $\epsilon > 0$ was arbitrary,

 $a_0 \in \liminf A_n$.

This proves (6). Combining (5) and (6) and using Remark 2.4, we see that (A_n) converges to A in the sense of Definition 2.3.

THEOREM 2.6. The space 2^X is compact.

Proof. To prove that 2^X is compact, it suffices by Theorem 2.5 to show that every sequence in 2^X has a convergent subsequence in the sense of Definition 2.3. To do this, let (A_n) be a sequence in 2^X . We define sequences

A study on the set-valued discrete dynamical system $(2^X, \overline{f})$

$$(A_n^n) : A_1^n, A_2^n, \cdots, A_n^n, \cdots$$

inductively as follows. Let $\beta = \{U_n\}$ be a countable basis for X. Define (A_n^1) by $A_n^1 = A_n$ for each $n = 1, 2, \cdots$. Assume inductively that we have defined the sequence (A_n^k) . We define (A_n^{k+1}) in one of the following two ways :

- (1) If (A_n^k) has a subsequence $(A_{n_i}^k)$ such that $(\limsup A_{n_i}^k) \cap U_k = \emptyset$,
- then let (A_n^{k+1}) be one such subsequence of (A_n^k).
 (2) If every subsequence of (A_n^k) has a point of its lim sup in U_k, then let (A_n^{k+1}) be given by A_n^{k+1} = A_n^k for each n = 1, 2,

Now, having defined the sequence (A_n^k) for each $k = 1, 2, \dots$, consider the 'diagonal sequence' (A_n^n) . Clearly (A_n^n) is a subsequence of (A_n) , and we will show it converges. Suppose (A_n^n) does not converges. Then, by Remark 2.4, there exists a point $p \in \limsup A_n^n$ such that $p \notin \liminf A_n^n$. Hence, there exists $U_m \in \beta$ such that $p \in U_m$ and such that $U_m \cap A_{n_i}^{n_i} = \emptyset$ for some subsequence $(A_{n_i}^{n_i})$ of (A_n^n) . Clearly $(A_{n_i}^{n_i})$ is a subsequence of (A_n^m) . Thus (A_n^m) satisfies (1) above. Hence

$$(\limsup A_n^{m+1}) \cap U_m = \emptyset.$$

Therefore, since $(A_n^n)_{n=m+1}^{\infty}$ is a subsequence of (A_n^{m+1}) , it follows using Remark 2.4 that $(\limsup A_n^n) \cap U_m = \emptyset$. But, since $p \in (\limsup A_n^n) \cap$ U_m , we have a contradiction. Therefore (A_n^n) converges. This completes the proof of Theorem.

For any finite non-empty open subsets U_1, \dots, U_n of X, let

$$\langle U_1, \cdots, U_n \rangle = \{A \in 2^X \mid A \subset \bigcup_{i=1}^n U_i \text{ and } A \cap U_i \neq \emptyset$$

for all $1 \leq i \leq n\}.$

THEOREM 2.7. Let (X, d) be a compact metric space. Then the set β of all subsets of 2^X of the form $\langle U_1, \cdots, U_n \rangle$ is a basis for 2^X .

Proof. First we show that $\langle U_1, \cdots, U_n \rangle$ is an open subset of 2^X . Let

$$A \in \langle U_1, \cdots, U_n \rangle$$
.

Then $A \subset \bigcup_{i=1}^{n} U_i$. For each $i = 1, \dots, n$, since $A \cap U_i \neq \emptyset$, we can choose a point $a_i \in A \cap U_i$. There exists $\epsilon > 0$ such that

$$N_d(A, \epsilon) \subset \bigcup_{i=1}^n U_i$$
 and $N_d(a_i, \epsilon) \subset U_i$ for all $1 \le i \le n$.

Let $B \in N_H(A, \epsilon)$. Then $B \subset N_d(A, \epsilon) \subset \bigcup_{i=1}^n U_i$. For each $i = 1, \dots, n$, since

$$a_i \in A \subset N_d(B, \epsilon),$$

there is a point $b_i \in B$ such that $d(a_i, b_i) < \epsilon$. Since $b_i \in N_d(a_i, \epsilon) \subset U_i$, we have

$$B \cap U_i \neq \emptyset$$
 for all $1 \le i \le n$

Thus $B \in U_1, \dots, U_n > \text{so } N_H(A, \epsilon) \subset U_1, \dots, U_n >$. Hence $U_1, \dots, U_n >$ is an open subset of 2^X .

Next we show that β is a basis for 2^X . Let α be an open subset of 2^X . Given any $A \in \alpha$, there exists $\epsilon > 0$ such that $N_H(A, \epsilon) \subset \alpha$. Since A is compact, there exist finitely many points a_1, \dots, a_n of A such that

$$A \subset \bigcup_{i=1}^n N_d\left(a_i, \ \frac{\epsilon}{3}\right)$$

Clearly, $A \in N_d(a_1, \frac{\epsilon}{3}), \cdots, N_d(a_n, \frac{\epsilon}{3}) >$. Let $B \in N_d(a_1, \frac{\epsilon}{3}), \cdots, N_d(a_n, \frac{\epsilon}{3}) >$. For any $b \in B$, since $B \subset \bigcup_{i=1}^n N_d(a_i, \frac{\epsilon}{3})$, there exists *i* such that $b \in N_d(a_i, \frac{\epsilon}{3})$. Thus

$$B \subset N_d\left(A, \ \frac{\epsilon}{3}\right).$$

For any $a \in A$, there exists *i* such that $a \in N_d(a_i, \frac{\epsilon}{3})$, that is, $d(a_i, a) < \frac{\epsilon}{3}$. Since

$$B \cap N_d \left(a_i, \ \frac{\epsilon}{3} \right) \neq \emptyset$$

we can choose a point $b \in B$ such that $d(a_i, b) < \frac{\epsilon}{3}$. Then we have

$$d(a, b) \le d(a, a_i) + d(a_i, b) < \frac{\epsilon}{3} + \frac{\epsilon}{3} = \frac{2}{3}\epsilon.$$

Thus $A \subset N_d(B, \frac{2}{3}\epsilon)$. Hence $H(A, B) \leq \frac{2}{3}\epsilon < \epsilon$ so we get

$$A \in \langle N_d\left(a_1, \frac{\epsilon}{3}\right), \cdots, N_d\left(a_n, \frac{\epsilon}{3}\right) \rangle \subset N_H(A, \epsilon) \subset \alpha.$$

Therefore β is a basis for 2^X .

If $f: X \to X$ is a continuous map then by $\overline{f}(A) = \{f(a) | a \in A\}$ for every $A \in 2^X$ one defines a continuous map $\overline{f}: 2^X \to 2^X$.

A map $f: X \to X$ is called to be *totally transitive* if $f^n: X \to X$ is transitive for every positive integer n. A map $f: X \to X$ is called to be *weak mixing* if the product map $f \times f: X \times X \to X \times X$ is transitive, and f is *strong mixing* if for any two non-empty open subsets U, V of X there is a positive integer N such that

$$f^n(U) \cap V \neq \emptyset$$

for every integer $n \geq N$.

In [8], Xiong and Yang investigated the chaos caused by a mixing map and revealed a kind of quite complex phenomenon.

A map $f: X \to X$ is called to be *weakly chaotic* in the sense of Xiong if there is a *c*-dense F_{σ} --subset *C* of *X* such that for any subset *A* of *C* and any continuous map $F: A \to X$ there is an increasing positive integer sequence (p_n) such that

$$\lim_{n \to \infty} f^{p_n}(x) = F(x)$$

for each $x \in A$. f is called to be *chaotic* in the sense of Xiong if for any given increasing positive integer sequence (p_n) there is a c-dense F_{σ} -subset C of X such that for any subset A of C and any continuous map $F : A \to X$ there is a subsequence (p_{n_i}) of (p_n) such that $\lim_{i\to\infty} f^{p_{n_i}}(x) = F(x)$ for each $x \in A$.

3. Mixing and transivity

Let A be a subset of X. Then we define the extension of A to 2^X as

$$e(A) = \{ K \in 2^X | K \subset A \}.$$

The following lemma is cited from [6].

LEMMA 3.1. If U is a non-empty open subset of X, then

(1) $e(U) \neq \emptyset$ if and only if $U \neq \emptyset$.

- (2) e(U) is a non-empty open subset of 2^X .
- $(3) \ e(U \cap V) = e(U) \cap e(V).$
- (4) $\underline{\overline{f}}^n = \overline{\overline{f}^n}$ for all positive integer *n*.

(5)
$$f(e(U)) \subset e(f(U)).$$

In [7], Shao studied the double properties and family versions of mixing.

THEOREM 3.2. [7] Let X be a compact metric space and $f: X \to X$ be a continuous map. Then the following conditions are equivalent.

- (1) f is weak mixing.
- (2) \overline{f} is weak mixing.
- (3) \overline{f} is transitive.

REMARK 3.3. [6] Roman-Flores showed that \overline{f} transitive implies f transitive. Hence, Theorem 3.2 generalizes the result of Roman-Flores. In addition, the theorem shows that the concepts of weak mixing and transitivity coincide for the set-valued discrete dynamical system $(2^X, \overline{f})$.

Devaney's chaoticity of f does not imply Devaney's chaoticity of \overline{f} as shown by the following example.

EXAMPLE 3.4. Let $X = \{0, 1\}$ be a discrete space and $f : X \to X$ be a continuous map with f(0) = 1 and f(1) = 0. Clearly, f is transitive and periodically dense. so f is Devaney chaotic. Since $2^X = \{\{0\}, \{1\}, \{0, 1\}\}$ is a discrete space with two periodic orbits, \overline{f} is not Devaney chaotic.

However, we have the following result.

THEOREM 3.5. Let X be a compact metric space and $f: X \to X$ be a continuous map. If f is Devaney chaotic and weak mixing, then \overline{f} is Devaney chaotic.

Proof. By Theorem 3.2, it is necessary to prove that if Per(f) is dense in X then $Per(\overline{f})$ is dense in 2^X , where Per(f) is the set of periodic points of f.

In fact, let α be a non-empty open subset of 2^X . We choose nonempty open subsets U_1, \dots, U_k of X such that

$$< U_1, \cdots, U_k > \subset \alpha.$$

Since Per(f) is dense in X, there are periodic points p_1, \dots, p_k of f such that $p_i \in U$ for every $i = 1, \dots, k$. Let $A = \{p_1, \dots, p_k\}$. Then $A \in Per(\overline{f})$ and $A \in U_1, \dots, U_k > \subset \alpha$.

This shows that $Per(\overline{f})$ is dense in 2^X .

THEOREM 3.6. Let X be a compact metric space and $f: X \to X$ be a continuous map. Then the following conditions are equivalent.

(1) \overline{f} is strong mixing.

(2) f is strong mixing.

Proof. (1) \Rightarrow (2): Suppose that \overline{f} is strong mixing. Let U, V be any two non-empty open subsets of X. Since e(U), e(V) are non-empty open subsets of 2^X , there is a positive integer N such that

$$\overline{f}^n(e(U)) \cap e(V) \neq \emptyset$$
 for all $n \ge N$.

By Lemma 3.1, we have

$$\overline{f}(e(U)) \cap e(V) \subset e(f^n(U)) \cap e(V) = e(f^n(U) \cap V).$$

Thus

$$f^n(U) \cap V \neq \emptyset$$
 for all $n \ge N$.

This shows that f is strong mixing.

(2) \Rightarrow (1): Suppose that \overline{f} is strong mixing. Let α and β be any two non-empty open subsets of 2^X . We choose non-empty open subsets

$$U_1, \cdots, U_k, V_1, \cdots, V_k$$

of X such that

$$\langle U_1, \cdots, U_k \rangle \subset \alpha \text{ and } \langle V_1, \cdots, V_k \rangle \subset \beta.$$

For each $i = 1, \dots, k$, since f is strong mixing, there exists a positive integer N_i such that

$$f^n(U_i) \cap V_i \neq \emptyset$$
 for all $n \geq N_i$

Let $N = \max\{N_1, \dots, N_k\}$. For every integer $n \ge N$, since $f^n(U_i) \cap V_i \ne \emptyset$, there is a point $x_i \in U_i$ such that $f^n(x_i) \in V_i$. Let $A = \{x_1, \dots, x_k\}$. Then $A \in 2^X$ and

 $A \in \langle U_1, \cdots, U_k \rangle \subset \alpha \text{ and } \overline{f}^n(A) \in \langle V_1, \cdots, V_k \rangle \subset \beta.$

Thus $\overline{f}^n(\alpha) \cap \beta \neq \emptyset$ for all $n \geq N$. This shows that \overline{f} is strong mixing.

THEOREM 3.7. Let X be a compact metric space and $f: X \to X$ be a continuous map. Then the following conditions are equivalent.

(1) \overline{f} is mild mixing.

(2) f is mild mixing.

Proof. (1) \Rightarrow (2): Suppose that \overline{f} is mild mixing. For any transitive dynamical system (Y, g), we will show that $(X \times Y, f \times g)$ is a transitive dynamical system.

Let $U_1 \times V_1$ and $U_2 \times V_2$ be two non-empty open subsets of $X \times Y$. Then $e(U_1) \times V_1$ and $e(U_2) \times V_2$ are two non-empty open subsets of $2^X \times Y$. Since $\overline{f} \times g$ is transitive, there are a positive integer n and a point $(A, y) \in e(U_1) \times V_1$ such that

$$(\overline{f} \times g)^n(A, y) = (\overline{f}^n(A), g^n(y)) \in e(U_2) \times V_2.$$

We pick a point $x \in A \subset U_1$. Then $f^n(x) \in \overline{f}^n(A) \subset U_2$. Thus $(x, y) \in U_1 \times V_1$ and

$$(f \times g)^n(x, y) = (f^n(x), g^n(y)) \in U_2 \times V_2.$$

Hence $(X \times Y, f \times g)$ is a transitive dynamical system. This shows that f is mild mixing.

(2) \Rightarrow (1): Suppose that f is mild mixing. For any transitive dynamical system (Y, g), we will show that $(2^X \times Y, \overline{f} \times g)$ is a transitive dynamical system.

Let $\alpha_1 \times V_1$ and $\alpha_2 \times V_2$ be two non-empty open subsets of $2^X \times Y$. Then there are non-empty open subsets $U_1^1, \dots, U_k^1, U_1^2, \dots, U_k^2$ of X such that

$$\langle U_1^1, \cdots, U_k^1 \rangle \subset \alpha_1 \text{ and } \langle U_1^2, \cdots, U_k^2 \rangle \subset \alpha_2.$$

Since f is mild mixing, $(X \times Y, f \times g)$ is a transitive dynamical system. By using the induction, we get that

$$(X^k \times Y, f \times \cdots \times f \times g)$$

is a transitive dynamical system. Thus, for two non-empty open subsets

$$U_1^1 \times \cdots \times U_k^1 \times V_1$$
 and $U_1^2 \times \cdots \times U_k^2 \times V_2$

of $X^k \times Y$, there are a positive integer n and a point

$$(x_1, \cdots, x_k, y) \in U_1^1 \times \cdots \times U_k^1 \times V_1$$

such that

$$(f \times \dots \times f \times g)^n(x_1, \dots, x_k, y) = (f^n(x_1), \dots, f^n(x_k), g^n(y))$$
$$\in U_1^2 \times \dots \times U_k^2 \times V_2.$$

Thus $f^n(x_i) \in U_i^2$ for every $i = 1, \dots, k$ and $g^n(y) \in V_2$. Let $A = \{x_1, \dots, x_k\}$. Then

$$A \in \langle U_1^1, \cdots, U_k^1 \rangle \subset \alpha_1 \text{ and } \overline{f}^n(A) \in \langle U_1^2, \cdots, U_k^2 \rangle \subset \alpha_2.$$

Hence

$$(A, y) \in \alpha_1 \times V_1 \text{ and } (\overline{f}^n(A), g^n(y)) = (\overline{f} \times g)^n(A, y) \in \alpha_2 \times V_2.$$

Therefore $(2^X \times Y, \overline{f} \times g)$ is a transitive dynamical system. This shows that \overline{f} is mild mixing.

4. Specification and totally transitivity

DEFINITION 4.1. A map $f: X \to X$ is called to have *specification* if for any positive number ϵ there is a positive number $M(\epsilon)$ such that for any integer $k \geq 2$ and any k points x_1, \dots, x_k of X, and any 2k non-negative integers

$$a_1 \le b_1 < a_2 \le b_2 < \dots < a_k \le b_k$$

with $a_i - b_{i-1} \ge M(\epsilon)$ for each $i = 2, \dots, k$ there is a point x of X satisfying

$$d(f^n(x), f^n(x_i)) < \epsilon$$

for every $n = a_i, \dots, b_i$ and every $i = 2, \dots, k$.

THEOREM 4.2. Let X be a compact metric space and $f: X \to X$ be a continuous map. Then the following conditions are equivalent.

(1) f has specification.

(2) f has specification.

Proof. (1) \Rightarrow (2): Suppose that \overline{f} has specification. Let $\epsilon > 0$ and let $M = M(\epsilon)$ be a positive number as in the definition of specification for \overline{f} . For any integer $k \geq 2$, we take any k points x_1, \dots, x_k of X and any 2k non-negative integers

$$a_1 \le b_1 < a_2 \le b_2 < \dots < a_k \le b_k$$

with $a_i - b_{i-1} \ge M$ for every $i = 2, \dots, k$. We denote $A_i = \{x_i\}$ for each $i = 1, \dots, k$, then $A_1, \dots, A_k \in 2^X$. Since \overline{f} has specification, there is a point A of 2^X such that

 $H(\overline{f}^n(A), \overline{f}^n(A_i)) < \epsilon$

for all $n = a_i, \dots, b_i$ and all $i = 1, \dots, k$. Since

$$\overline{f}^n(A) \subset N(\overline{f}^n(A_i), \epsilon) = N(f^n(x_i), \epsilon)$$

we pick a point $x \in A$, then we have

$$d(f^n(x), f^n(x_i)) < \epsilon$$

for all $n = a_i, \dots, b_i$ and all $i = 1, \dots, k$. Thus f has specification.

 $(2) \Rightarrow (1)$: Suppose that f has specification. Let $\epsilon > 0$ and let $M = M(\frac{\epsilon}{3})$ be a positive number as in the definition of specification for f. For any integer $k \ge 2$, we take any k points A_1, \dots, A_k of 2^X and any 2k non-negative integers

$$a_1 \le b_1 < a_2 \le b_2 < \dots < a_k \le b_k$$

with $a_i - b_{i-1} \ge M$ for every $i = 2, \dots, k$. Since f, \dots, f^{b_k} are uniformly continuous, there exists a $\delta > 0$ such that

$$d(x, y) < \delta$$
 implies $d(f^i(x), f^i(y)) < \frac{\epsilon}{3}$

for all $i = 0, 1, \dots, b_k$. For each $i = 1, \dots, k$, $\{N(x, \delta) | x \in A_i\}$ is an open cover of A_i . Since A_i is compact, there are finitely many points $x_1^i, \dots, x_{m_i}^i$ of A_i such that

$$A_i \subset \bigcup_{t=1}^{m_i} N(x_t^i, \delta).$$

For k points $x_{t_1}^1, \dots, x_{t_k}^k$ of X where $1 \le t_i \le m_i$ and $1 \le i \le k$, since f has specification, there is a point $x(t_1, \dots, t_k)$ of X such that

$$d(f^n(x(t_1, \dots, t_k)), f^n(x_{t_i}^i)) < \frac{\epsilon}{3}$$

for all $n = a_i, \dots, b_i$ and all $i = 1, \dots, k$. Let

$$A = \{x(t_1, \dots, t_k) | 1 \le i \le k, \ 1 \le t_i \le m_i\}.$$

Then $A \in 2^X$. Let $i = 1, \dots, k$ and $1 \le t_i \le m_i$. Since

$$d(f^n(x(t_1, \dots, t_k)), \overline{f}^n(A_i)) \le d(f^n(x(t_1, \dots, t_k)), f^n(x_{t_i}^i)) < \frac{\epsilon}{3},$$

we have

$$\overline{f}^n(A) \subset N\left(\overline{f}^n(A_i), \frac{\epsilon}{3}\right)$$

for all $n = a_i, \dots, b_i$. Given any $x \in A_i$, there exists a t_i such that $x \in N(x_{t_i}^i, \delta)$. Since $d(x_{t_i}^i, x) < \delta$, we have $d(f^n(x_{t_i}^i), f^n(x)) < \frac{\epsilon}{3}$ for all $n = a_i, \dots, b_i$. Choose any

$$t_1, \ \cdots, \ t_{i-1}, \ t_{i+1}, \ \cdots, \ t_k$$

then we have

$$d(f^{n}(x), \ \overline{f}^{n}(A)) \leq d(f^{n}(x), \ f^{n}(x(t_{1}, \ \cdots, \ t_{k})))$$

$$\leq d(f^{n}(x), \ f^{n}(x_{t_{i}}^{i})) + d(f^{n}(x_{t_{i}}^{i}), \ f^{n}(x(t_{1}, \ \cdots, \ t_{k})))$$

$$< \frac{\epsilon}{3} + \frac{\epsilon}{3} = \frac{2}{3}\epsilon$$

Thus $\overline{f}^n(A_i) \subset N(\overline{f}^n(A), \frac{2}{3}\epsilon$. Hence

$$H(\overline{f}^n(A), \ \overline{f}^n(A_i)) \le \frac{2}{3}\epsilon < \epsilon$$

for all $i = a_i, \dots, b_i$. Therefore \overline{f} has specification.

In [1], Bowen introduced the concept of Property P to characterize chaotic phenomenon of flow with the specification property.

A map $f: X \to X$ is called to have *Property* P if for any two nonempty open subsets U_1 , U_2 of X there exists a positive integer N such that, for any integer $k \ge 2$ and any $s = (s(1), s(2), \dots, s(k)) \in \{1, 2\}^k$ there is a point x of X satisfying

$$x \in U_{s(1)}, \ f^N(x) \in U_{s(2)}, \ \cdots, \ f^{(k-1)N}(x) \in U_{s(k)}.$$

THEOREM 4.3. [9] Let X be a compact metric space and $f: X \to X$ be a continuous map. If f has Property P then f is weak mixing.

THEOREM 4.4. Let X be a compact metric space and $f: X \to X$ be a continuous map. Then the following conditions are equivalent.

(1) \overline{f} has Property P.

(2) f has Property P.

Proof. (1) \Rightarrow (2): Suppose that \overline{f} has Property *P*. Let U_1 and U_2 be any two non-empty open subsets of *X*. By Lemma 3.1, $e(U_1)$ and $e(U_2)$ are non-empty open subsets of 2^X . Since \overline{f} has Property *P*, there is a positive integer *N* such that, for any integer $k \geq 2$ and any $s = (s(1), s(2), \dots, s(k)) \in \{1, 2\}^k$, there is a point *A* of 2^X satisfying

$$A \in e(U_{s(1)}), \ \overline{f}^{N}(A) \in e(U_{s(2)}), \ \cdots, \ \overline{f}^{(k-1)N}(A) \in e(U_{s(k)}).$$

Thus we have

$$A \subset U_{s(1)}, \ \overline{f}^N(A) \in U_{s(2)}, \ \cdots, \ \overline{f}^{(k-1)N}(A) \subset U_{s(k)}.$$

Picking a point $x \in A$, then we have

$$x \in U_{s(1)}, \ f^N(x) \in U_{s(2)}, \ \cdots, \ f^{(k-1)N}(x) \in U_{s(k)}.$$

Hence f has Property P.

 $(2) \Rightarrow (1)$: Suppose that f has Property P. Let α_1, α_2 be any two nonempty open subsets of 2^X . Choose open subsets $U_1^1, \dots, U_m^1, U_1^2, \dots, U_m^2$ of X such that

$$\langle U_1^1, \cdots, U_m^1 \rangle \subset \alpha_1 \text{ and } \langle U_1^2, \cdots, U_m^2 \rangle \subset \alpha_2.$$

Since f has Property P, for two non-empty open subsets U_i^1 and U_i^2 of X there is a positive integer N_i such that for any integer $k_i \geq 2$ and any

$$s = (s(1), s(2), \cdots, s(k_i)) \in \{1, 2\}^{k_i},$$

there is a point x_i of X satisfying

$$x_i \in U_i^{s(1)}, \ f^{N_i}(x_i) \in U_i^{s(2)}, \ \cdots, \ f^{(k_i-1)N_i}(x_i) \in U_i^{s(k_i)}.$$

Let N denote the least common multiple of N_1, N_2, \dots, N_m . For any integer $k \geq 2$ and any $s = (s(1), s(2), \dots, s(k)) \in \{1, 2\}^k$, we denote

$$p_i = \frac{N}{N_i}, \ i = 1, \ 2, \ \cdots, \ m$$

and

$$s = (s(1), \dots, s(1), s(2), \dots, s(2), \dots, s(k), \dots, s(k)) \in \{1, 2\}^{kp_i}.$$

Then there is a point y_i of X such that

$$y_{i} \in U_{i}^{s(1)}, \ f^{N_{i}}(y_{i}) \in U_{i}^{s(1)}, \ \cdots, \ f^{(p_{i}-1)N_{i}}(y_{i}) \in U_{i}^{s(1)}$$

$$f^{p_{i}N_{i}}(y_{i}) \in U_{i}^{s(2)}, \ f^{(p_{i}+1)N_{i}}(y_{i}) \in U_{i}^{s(2)}, \ \cdots, \ f^{(2p_{i}-1)N_{i}}(y_{i}) \in U_{i}^{s(2)}$$

$$\vdots$$

$$f^{(k-1)p_{i}N_{i}}(y_{i}) \in U_{i}^{s(k)}, \ f^{((k-1)p_{i}+1)N_{i}}(y_{i}) \in U_{i}^{s(k)}, \cdots,$$

$$f^{(kp_{i}-1)N_{i}}(y_{i}) \in U_{i}^{s(k)}.$$

Thus we have

$$y_i \in U_i^{s(1)}, \ f^N(y_i) \in U_i^{s(2)}, \ \cdots, \ f^{(k-1)N}(y_i) \in U_i^{s(k)}.$$

Let $A = \{y_1, y_2, \dots, y_m\}$. Then $A \in 2^X$ and

$$A \in \langle U_1^{s(1)}, U_2^{s(1)}, \cdots, U_m^{s(1)} \rangle \subset \alpha_{s(1)}$$

$$\overline{f}^N(A) \in \langle U_1^{s(2)}, U_2^{s(2)}, \cdots, U_m^{s(2)} \rangle \subset \alpha_{s(2)}$$

$$\vdots$$

$$\overline{f}^{(k-1)N}(A) \in \langle U_1^{s(k)}, U_2^{s(k)}, \cdots, U_m^{s(k)} \rangle \subset \alpha_{s(k)}$$

Hence \overline{f} has Property *P*.

Finally, we discuss totally transitivity.

THEOREM 4.5. Let X be a compact metric space and $f: X \to X$ be a continuous map. If \overline{f} is totally transitive, then so is f. However, the converse is not true.

Proof. Since \overline{f} is totally transitive, for every positive integer k, $\overline{f}^k = \overline{f^k}$ is transitive. By Theorem 3.6 of [6], f^k is transitive. Thus f is totally transitive.

In general, the converse of Theorem 4.5 is not true.

A study on the set-valued discrete dynamical system $(2^X, \overline{f})$

References

- R. Bowen, Periodic points and measures of Anosov diffeomorphisms, Trans. Amer. Math. Soc. 154 (1971), 377-397.
- [2] M. Denker, C. Grillenberger, and K. Sigmund, Ergodic theory on compact spaces, Lecture notes in mathematics 527, Springer-Verlag 1976.
- [3] R. Gu and W. Guo, On mixing property in set-valued discrete systems, chaos, soultions and Fractals, 28 (2006), 747-754.
- [4] S. Li, Dynamical properties of the shift maps on the inverse limit spaces, Ergodic Th. and Dynam. Sys. 12 (1992), 95-108.
- [5] R. Peleg, Weak disjointness of transformation groups, Proc. Amer. Math. Soc. 33 (1972), 165-170.
- [6] H. Roman-Flores, A note on transitivity in set-valued discrete systems, Chaos, Solitons and Fractals, 17 (2003), 99-104.
- [7] S. Shao, *Dynamical systems and families*, Doctorial thesis of University of Science and Technology of China, 2004.
- [8] J. Xiang and Z. Yang, Chaos caused by a topologically mixing map, Dynamical systems and related topics, Singapore : World Scientific, (1991), 550-572.
- R. Yang and S. Shen, Pseudo-orbit-tracing and completely positive entropy, Acta Math. Sinica, 42 (1999), 99-104.

*

Department of Mathematics Hoseo University Cheonan 31066, Republic of Korea *E-mail*: kblee@hoseo.edu