A STUDY ON THE SET-VALUED DISCRETE DYNAMICAL SYSTEM $\left(2^{X}, \bar{f}\right)$

Kyung Bok Lee*

Abstract

This paper is devoted to some dynamical properties such as transitivity, mixing and specification of two discrete dynamical systems (X, f) and $\left(2^{X}, \bar{f}\right)$ on compact metric spaces.

1. Introduction and backgrounds

S. Li [4] proved that the shift map $\sigma_{f}: \lim (X, f) \leftarrow \lim (X, f)$ induced by a continuous map f on a compact metric space X is chaotic in the sense of Devaney if and only if (X, f) is chaotic in the sense of Devaney. Moreover, Roman-Flore [6] showed that the Devaney's chaoticity of (X, f) implies the Devaney's chaoticity of the set-valued dynamical system $\left(2^{X}, \bar{f}\right)$, and gave a question whether the converse of the statement in true or not.

In this paper we give a partial answer about the above question, and study some relationship between two dynamics of (X, f) and $\left(2^{X}, \bar{f}\right)$. More precisely, we show that if Devaney chaotic and weak mixing then \bar{f} is Devaney chaotic; f is strong [resp. mild] mixing if and only if \bar{f} is strong [resp. mild] mixing, respectively; f is has a specification [resp. Property P] if and only if \bar{f} has specification. [Property P], respectively.

We start with the definition of Devaney chaos. Let (X, d) be a compact metric space and $f: X \rightarrow X$ be a continuous map. A map f is called to be Devaney chaotic [2] if f satisfies the following three conditions.
(1) f is transitive that is for every pair U, V of non-empty open subsets of X there is a positive integer n such that $f^{n}(U) \cap V \neq \emptyset$.

[^0](2) f is periodically dense that is the set of periodic points of f is dense in X.
(3) f has sensitive dependence on initial conditions that is there exists a $\delta>0$ such that for any $x \in X$, there exist a sequence $\left(x_{k}\right)$ in X and a sequence $\left(n_{k}\right)$ of positive integers such that $\lim _{k \rightarrow \infty} x_{k}=x$ and $d\left(f^{n_{k}}(x), f^{n_{k}}\left(x_{k}\right)\right) \geq \delta$ for all k.

2. Preliminaries

In this paper, we will investigate the relationships between the mixing property of $\left(2^{X}, \bar{f}\right)$ and the mixing property of (X, f). In addition, we discuss totally transitivity and specification for the set-valued discrete dynamical system $\left(2^{X}, \bar{f}\right)$.

For a compact metric space (X, d), let 2^{X} be the family of all nonempty compact subsets of X. A metric H on 2^{X} is defined as follows:

Definition 2.1. If $\epsilon>0$ and $A \in 2^{X}$, then

$$
N(A, \epsilon)=\{x \in X \mid d(x, a)<\epsilon \text { for some } a \in A\} .
$$

If $A, B \in 2^{X}$, then define

$$
H(A, B)=\inf \{\epsilon>0 \mid A \subset N(B, \epsilon) \text { and } B \subset N(A, \epsilon)\}
$$

In fact, as will be proved in Theorem $2.2, H$ is a metric on 2^{X}. It will be called the Hausdorff metric induced by d.

TheOrem 2.2. The function $H: 2^{X} \times 2^{X} \rightarrow[0, \infty)$ is a metric on 2^{X} 。

Proof. We will prove the triangle inequality. Let $A, B, C \in 2^{X}$. We will show that

$$
\left(^{*}\right) H(A, C) \leq H(A, B)+H(B, C) \text {. }
$$

To prove $\left(^{*}\right)$, let $\eta>0$ and let $\delta=\eta / 2$. From the definition of H we see that
(1) $A \subset N(B, H(A, B)+\delta)$, and
(2) $B \subset N(C, H(B, C)+\delta)$.

Let $a \in A$. By (1), there exists $b \in B$ such that
(3) $d(a, b)<H(A, B)+\delta$.

By (2), there exists $c \in C$ such that
(4) $d(b, c)<H(B, C)+\delta$.

Using (3), (4), and the definition of δ, it follows easily that

$$
d(a, c)<H(A, B)+H(B, C)+\eta
$$

Therefore, since a was an arbitrary point of A, we have proved that
(5) $A \subset N(C, H(A, B)+H(B, C)+\eta)$.

A similar argument shows that
(6) $C \subset N(A, H(A, B)+H(B, C)+\eta)$.

Since η was an arbitrary positive number, it follows from (5), (6), and the definition of $H(A, C)$ that $\left(^{*}\right)$ holds. This completes the proof of Theorem 2.2.

Definition 2.3. Let $\left(A_{n}\right)$ be a sequence in 2^{X}. Then define
$\liminf A_{n}=\left\{x \in X \mid\right.$ if U is a neighborhood of x, then $U \cap A_{n} \neq \emptyset$ for all but finitely many $n\}$
$\limsup A_{n}=\left\{x \in X \mid\right.$ if U is a neighborhood of x, then $U \cap A_{n} \neq \emptyset$ for infinitely many $n\}$
If $\liminf A_{n}=A=\limsup A_{n}$, then we say that the sequence $\left(A_{n}\right)$ converges to A, written $\lim _{n \rightarrow \infty} A_{n}=A$.

Remark 2.4. Let $\left(A_{n}\right)$ be a sequence in 2^{X}. As is easy to verify :
(1) $\liminf A_{n} \subset \limsup A_{n}$.
(2) $\lim \inf A_{n}$ and $\limsup A_{n}$ are each closed subsets of X.
(3) If $\left(A_{n_{i}}\right)$ is a subsequence of $\left(A_{n}\right)$, then
$\liminf A_{n} \subset \liminf A_{n_{i}}$ and $\limsup A_{n_{i}} \subset \limsup A_{n}$.
Theorem 2.5. Let $\left(A_{n}\right)$ be a sequence in 2^{X}. If $\left(A_{n}\right)$ converges to A in the sense of Definition 2.3, then $A \in 2^{X}$ and $\left(A_{n}\right)$ converges to A with respect to the Hausdorff metric. Conversely, if $\left(A_{n}\right)$ converges with respect to the Hausdorff metric to A, then $\left(A_{n}\right)$ converges to A in the sense of Definition 2.3.

Proof. First assume $\left(A_{n}\right)$ converges to A in the sense of Definition 2.3. Since X is compact and each $A_{n} \neq \emptyset$, it follows that $\limsup A_{n} \neq \emptyset$. Thus, since $A=\limsup A_{n}$, we have that $A \neq \emptyset$. Also, by Remark 2.4, A is a compact subset of X. Hence $A \in 2^{X}$. Now we show that $\left(A_{n}\right)$ converges to A with respect to the Hausdorff metric. Let $\epsilon>0$. Note that
(1) $\lim \sup A_{n}=A \subset N_{d}(A, \epsilon)$
and that, since $N_{d}(A, \epsilon)$ is an open subset of X,
(2) the complement of $N_{d}(A, \epsilon)$ is a compact subset of X.

Using (1), (2), and Remark 2.4, it follows that there exists a natural number N_{1} such that
(3) $A_{n} \subset N_{d}(A, \epsilon)$ for each $n \geq N_{1}$.

Since A is a non-empty compact subset of X, there exist a finite number of open subsets U_{1}, \cdots, U_{k} of X such that $A \subset \cup_{i=1}^{k} U_{i}$, the diameter of each U_{i} is less than ϵ, and $U_{i} \cap A \neq \emptyset$ for each $i=1, \cdots, k$. Then, since $A=\liminf A_{n}$, there exists for each $i=1, \cdots, k$ a natural number M_{i} such that $A_{n} \cap U_{i} \neq \emptyset$ whenever $n \geq M_{i}$. Let $N_{2}=\max \left\{M_{1}, \cdots, M_{k}\right\}$. It is easy to verify that
(4) $A \subset N_{d}\left(A_{n}, \epsilon\right)$ for each $n \geq N_{2}$.

Let $N=\max \left\{N_{1}, N_{2}\right\}$. Then, by (3), (4), and the definition of H we see that $H\left(A, A_{n}\right)<\epsilon$ for each $n \geq N$. Therefore we have proved that $\left(A_{n}\right)$ converges to A with respect to the Hausdorff metric. This proves half of Theorem. To prove the other half, assume $\left(A_{n}\right)$ converges to an $A \in 2^{X}$ with respect to the Hausdorff metric. We first show that
(5) $\lim \sup A_{n} \subset A$.

To verify (5), let $\epsilon>0$. Since $\left(A_{n}\right)$ converges to A with respect to the Hausdorff metric, there exists a natural number N such that $H\left(A, A_{n}\right)<\epsilon$ for each $n \geq N$. This implies that no point of $\lim \sup A_{n}$ can be more that ϵ from every pont of A. Therefore, since $\epsilon>0$ was arbitrary, we have proved (5). Next we show that
(6) $A \subset \liminf A_{n}$.

To verify (6), let $\epsilon>0$. Let $a_{0} \in A$ and let $U=N_{d}\left(a_{0}, \epsilon\right)$. Since $\left(A_{n}\right)$ converges to A with respect to the Hausdorff metric, there exists a natural number N such that $H\left(A, A_{n}\right)<\epsilon$ for each $n \geq N$. Hence, by the definition of H, we have that $A \subset N_{d}\left(A_{n}, \epsilon\right)$ for each $n \geq N$. Thus $U \cap A_{n} \neq \emptyset$ for each $n \geq N$. Therefore, since $\epsilon>0$ was arbitrary,

$$
a_{0} \in \liminf A_{n} .
$$

This proves (6). Combining (5) and (6) and using Remark 2.4, we see that $\left(A_{n}\right)$ converges to A in the sense of Definition 2.3.

Theorem 2.6. The space 2^{X} is compact.
Proof. To prove that 2^{X} is compact, it suffices by Theorem 2.5 to show that every sequence in 2^{X} has a convergent subsequence in the sense of Definition 2.3. To do this, let $\left(A_{n}\right)$ be a sequence in 2^{X}. We define sequences

$$
\begin{aligned}
& \left(A_{n}^{1}\right): A_{1}^{1}, A_{2}^{1}, \cdots, A_{n}^{1}, \cdots \\
& \left(A_{n}^{2}\right): A_{1}^{2}, A_{2}^{2}, \cdots, A_{n}^{2}, \cdots
\end{aligned}
$$

$$
\begin{gathered}
\vdots \\
\left(A_{n}^{n}\right): A_{1}^{n}, A_{2}^{n}, \cdots, A_{n}^{n}, \cdots
\end{gathered}
$$

inductively as follows. Let $\beta=\left\{U_{n}\right\}$ be a countable basis for X. Define $\left(A_{n}^{1}\right)$ by $A_{n}^{1}=A_{n}$ for each $n=1,2, \cdots$. Assume inductively that we have defined the sequence $\left(A_{n}^{k}\right)$. We define $\left(A_{n}^{k+1}\right)$ in one of the following two ways :
(1) If $\left(A_{n}^{k}\right)$ has a subsequence $\left(A_{n_{i}}^{k}\right)$ such that $\left(\limsup A_{n_{i}}^{k}\right) \cap U_{k}=\emptyset$, then let $\left(A_{n}^{k+1}\right)$ be one such subsequence of $\left(A_{n}^{k}\right)$.
(2) If every subsequence of $\left(A_{n}^{k}\right)$ has a point of its \limsup in U_{k}, then let $\left(A_{n}^{k+1}\right)$ be given by $A_{n}^{k+1}=A_{n}^{k}$ for each $n=1,2, \cdots$.
Now, having defined the sequence $\left(A_{n}^{k}\right)$ for each $k=1,2, \cdots$, consider the 'diagonal sequence' $\left(A_{n}^{n}\right)$. Clearly $\left(A_{n}^{n}\right)$ is a subsequence of $\left(A_{n}\right)$, and we will show it converges. Suppose $\left(A_{n}^{n}\right)$ does not converges. Then, by Remark 2.4, there exists a point $p \in \lim \sup A_{n}^{n}$ such that $p \notin \lim \inf A_{n}^{n}$. Hence, there exists $U_{m} \in \beta$ such that $p \in U_{m}$ and such that $U_{m} \cap A_{n_{i}}^{n_{i}}=\emptyset$ for some subsequence $\left(A_{n_{i}}^{n_{i}}\right)$ of $\left(A_{n}^{n}\right)$. Clearly $\left(A_{n_{i}}^{n_{i}}\right)$ is a subsequence of $\left(A_{n}^{m}\right)$. Thus $\left(A_{n}^{m}\right)$ satisfies (1) above. Hence

$$
\left(\limsup A_{n}^{m+1}\right) \cap U_{m}=\emptyset
$$

Therefore, since $\left(A_{n}^{n}\right)_{n=m+1}^{\infty}$ is a subsequence of $\left(A_{n}^{m+1}\right)$, it follows using Remark 2.4 that $\left(\limsup A_{n}^{n}\right) \cap U_{m}=\emptyset$. But, since $p \in\left(\lim \sup A_{n}^{n}\right) \cap$ U_{m}, we have a contradiction. Therefore $\left(A_{n}^{n}\right)$ converges. This completes the proof of Theorem.

For any finite non-empty open subsets U_{1}, \cdots, U_{n} of X, let

$$
\begin{aligned}
& <U_{1}, \cdots, U_{n}>=\left\{A \in 2^{X} \mid A \subset \cup_{i=1}^{n} U_{i} \text { and } A \cap U_{i} \neq \emptyset\right. \\
& \text { for all } 1 \leq i \leq n\} \text {. }
\end{aligned}
$$

Theorem 2.7. Let (X, d) be a compact metric space. Then the set β of all subsets of 2^{X} of the form $<U_{1}, \cdots, U_{n}>$ is a basis for 2^{X}.

Proof. First we show that $<U_{1}, \cdots, U_{n}>$ is an open subset of 2^{X}. Let

$$
A \in<U_{1}, \cdots, U_{n}>
$$

Then $A \subset \cup_{i=1}^{n} U_{i}$. For each $i=1, \cdots, n$, since $A \cap U_{i} \neq \emptyset$, we can choose a point $a_{i} \in A \cap U_{i}$. There exists $\epsilon>0$ such that

$$
N_{d}(A, \epsilon) \subset \cup_{i=1}^{n} U_{i} \text { and } N_{d}\left(a_{i}, \epsilon\right) \subset U_{i} \text { for all } 1 \leq i \leq n
$$

Let $B \in N_{H}(A, \epsilon)$. Then $B \subset N_{d}(A, \epsilon) \subset \cup_{i=1}^{n} U_{i}$. For each $i=$ $1, \cdots, n$, since

$$
a_{i} \in A \subset N_{d}(B, \epsilon),
$$

there is a point $b_{i} \in B$ such that $d\left(a_{i}, b_{i}\right)<\epsilon$. Since $b_{i} \in N_{d}\left(a_{i}, \epsilon\right) \subset U_{i}$, we have

$$
B \cap U_{i} \neq \emptyset \text { for all } 1 \leq i \leq n .
$$

Thus $B \in<U_{1}, \cdots, U_{n}>$ so $N_{H}(A, \epsilon) \subset<U_{1}, \cdots, U_{n}>$. Hence $<U_{1}, \cdots, U_{n}>$ is an open subset of 2^{X}.

Next we show that β is a basis for 2^{X}. Let α be an open subset of 2^{X}. Given any $A \in \alpha$, there exists $\epsilon>0$ such that $N_{H}(A, \epsilon) \subset \alpha$. Since A is compact, there exist finitely many points a_{1}, \cdots, a_{n} of A such that

$$
A \subset \cup_{i=1}^{n} N_{d}\left(a_{i}, \frac{\epsilon}{3}\right) .
$$

Clearly, $A \in<N_{d}\left(a_{1}, \frac{\epsilon}{3}\right), \cdots, N_{d}\left(a_{n}, \frac{\epsilon}{3}\right)>$. Let $B \in<N_{d}\left(a_{1}\right.$, $\left.\frac{\epsilon}{3}\right), \cdots, N_{d}\left(a_{n}, \frac{\epsilon}{3}\right)>$. For any $b \in B$, since $B \subset \cup_{i=1}^{n} N_{d}\left(a_{i}, \frac{\epsilon}{3}\right)$, there exists i such that $b \in N_{d}\left(a_{i}, \frac{\epsilon}{3}\right)$. Thus

$$
B \subset N_{d}\left(A, \frac{\epsilon}{3}\right) .
$$

For any $a \in A$, there exists i such that $a \in N_{d}\left(a_{i}, \frac{\epsilon}{3}\right)$, that is, $d\left(a_{i}, a\right)<\frac{\epsilon}{3}$. Since

$$
B \cap N_{d}\left(a_{i}, \frac{\epsilon}{3}\right) \neq \emptyset,
$$

we can choose a point $b \in B$ such that $d\left(a_{i}, b\right)<\frac{\epsilon}{3}$. Then we have

$$
d(a, b) \leq d\left(a, a_{i}\right)+d\left(a_{i}, b\right)<\frac{\epsilon}{3}+\frac{\epsilon}{3}=\frac{2}{3} \epsilon .
$$

Thus $A \subset N_{d}\left(B, \frac{2}{3} \epsilon\right)$. Hence $H(A, B) \leq \frac{2}{3} \epsilon<\epsilon$ so we get

$$
A \in<N_{d}\left(a_{1}, \frac{\epsilon}{3}\right), \cdots, N_{d}\left(a_{n}, \frac{\epsilon}{3}\right)>\subset N_{H}(A, \epsilon) \subset \alpha .
$$

Therefore β is a basis for 2^{X}.
If $f: X \rightarrow X$ is a continuous map then by $\bar{f}(A)=\{f(a) \mid a \in A\}$ for every $A \in 2^{X}$ one defines a continuous map $\bar{f}: 2^{X} \rightarrow 2^{X}$.

A map $f: X \rightarrow X$ is called to be totally transitive if $f^{n}: X \rightarrow X$ is transitive for every positive integer n. A map $f: X \rightarrow X$ is called to be weak mixing if the product map $f \times f: X \times X \rightarrow X \times X$ is transitive, and f is strong mixing if for any two non-empty open subsets U, V of X there is a positive integer N such that

$$
f^{n}(U) \cap V \neq \emptyset
$$

for every integer $n \geq N$.
In [8], Xiong and Yang investigated the chaos caused by a mixing map and revealed a kind of quite complex phenomenon.

A map $f: X \rightarrow X$ is called to be weakly chaotic in the sense of Xiong if there is a c-dense F_{σ}--subset C of X such that for any subset A of C and any continuous map $F: A \rightarrow X$ there is an increasing positive integer sequence $\left(p_{n}\right)$ such that

$$
\lim _{n \rightarrow \infty} f^{p_{n}}(x)=F(x)
$$

for each $x \in A . f$ is called to be chaotic in the sense of Xiong if for any given increasing positive integer sequence $\left(p_{n}\right)$ there is a c-dense F_{σ}-subset C of X such that for any subset A of C and any continuous map $F: A \rightarrow X$ there is a subsequence $\left(p_{n_{i}}\right)$ of $\left(p_{n}\right)$ such that $\lim _{i \rightarrow \infty} f^{p_{n_{i}}}(x)=F(x)$ for each $x \in A$.

3. Mixing and transivity

Let A be a subset of X. Then we define the extension of A to 2^{X} as

$$
e(A)=\left\{K \in 2^{X} \mid K \subset A\right\} .
$$

The following lemma is cited from [6].
Lemma 3.1. If U is a non-empty open subset of X, then
(1) $e(U) \neq \emptyset$ if and only if $U \neq \emptyset$.
(2) $e(U)$ is a non-empty open subset of 2^{X}.
(3) $e(U \cap V)=e(U) \cap e(V)$.
(4) $\bar{f}^{n}=\overline{f^{n}}$ for all positive integer n.
(5) $\bar{f}(e(U)) \subset e(\bar{f}(U))$.

In [7], Shao studied the double properties and family versions of mixing.

Theorem 3.2. [7] Let X be a compact metric space and $f: X \rightarrow X$ be a continuous map. Then the following conditions are equivalent.
(1) f is weak mixing.
(2) \bar{f} is weak mixing.
(3) \bar{f} is transitive.

Remark 3.3. [6] Roman-Flores showed that \bar{f} transitive implies f transitive. Hence, Theorem 3.2 generalizes the result of Roman-Flores. In addition, the theorem shows that the concepts of weak mixing and transitivity coincide for the set-valued discrete dynamical system $\left(2^{X}, \bar{f}\right)$.

Devaney's chaoticity of f does not imply Devaney's chaoticity of \bar{f} as shown by the following example.

Example 3.4. Let $X=\{0,1\}$ be a discrete space and $f: X \rightarrow$ X be a continuous map with $f(0)=1$ and $f(1)=0$. Clearly, f is transitive and periodically dense. so f is Devaney chaotic. Since $2^{X}=$ $\{\{0\},\{1\},\{0,1\}\}$ is a discrete space with two periodic orbits, \bar{f} is not Devaney chaotic.

However, we have the following result.
Theorem 3.5. Let X be a compact metric space and $f: X \rightarrow X$ be a continuous map. If f is Devaney chaotic and weak mixing, then \bar{f} is Devaney chaotic.

Proof. By Theorem 3.2, it is necessary to prove that if $\operatorname{Per}(f)$ is dense in X then $\operatorname{Per}(\bar{f})$ is dense in 2^{X}, where $\operatorname{Per}(f)$ is the set of periodic points of f.

In fact, let α be a non-empty open subset of 2^{X}. We choose nonempty open subsets U_{1}, \cdots, U_{k} of X such that

$$
<U_{1}, \cdots, U_{k}>\subset \alpha
$$

Since $\operatorname{Per}(f)$ is dense in X, there are periodic points p_{1}, \cdots, p_{k} of f such that $p_{i} \in U$ for every $i=1, \cdots, k$. Let $A=\left\{p_{1}, \cdots, p_{k}\right\}$. Then $A \in \operatorname{Per}(\bar{f})$ and $A \in<U_{1}, \cdots, U_{k}>\subset \alpha$.

This shows that $\operatorname{Per}(\bar{f})$ is dense in 2^{X}.
Theorem 3.6. Let X be a compact metric space and $f: X \rightarrow X$ be a continuous map. Then the following conditions are equivalent.
(1) \bar{f} is strong mixing.
(2) f is strong mixing.

Proof. (1) $\Rightarrow(2)$: Suppose that \bar{f} is strong mixing. Let U, V be any two non-empty open subsets of X. Since $e(U), e(V)$ are non-empty open subsets of 2^{X}, there is a positive integer N such that

$$
\bar{f}^{n}(e(U)) \cap e(V) \neq \emptyset \text { for all } n \geq N
$$

By Lemma 3.1, we have

$$
\bar{f}(e(U)) \cap e(V) \subset e\left(f^{n}(U)\right) \cap e(V)=e\left(f^{n}(U) \cap V\right)
$$

Thus

$$
f^{n}(U) \cap V \neq \emptyset \text { for all } n \geq N
$$

This shows that f is strong mixing.
$(2) \Rightarrow(1)$: Suppose that \bar{f} is strong mixing. Let α and β be any two non-empty open subsets of 2^{X}. We choose non-empty open subsets

$$
U_{1}, \cdots, U_{k}, V_{1}, \cdots, V_{k}
$$

of X such that

$$
<U_{1}, \cdots, U_{k}>\subset \alpha \text { and }<V_{1}, \cdots, V_{k}>\subset \beta
$$

For each $i=1, \cdots, k$, since f is strong mixing, there exists a positive integer N_{i} such that

$$
f^{n}\left(U_{i}\right) \cap V_{i} \neq \emptyset \text { for all } n \geq N_{i} .
$$

Let $N=\max \left\{N_{1}, \cdots, N_{k}\right\}$. For every integer $n \geq N$, since $f^{n}\left(U_{i}\right) \cap$ $V_{i} \neq \emptyset$, there is a point $x_{i} \in U_{i}$ such that $f^{n}\left(x_{i}\right) \in V_{i}$. Let $A=$ $\left\{x_{1}, \cdots, x_{k}\right\}$. Then $A \in 2^{X}$ and

$$
A \in<U_{1}, \cdots, U_{k}>\subset \alpha \text { and } \bar{f}^{n}(A) \in<V_{1}, \cdots, V_{k}>\subset \beta
$$

Thus $\bar{f}^{n}(\alpha) \cap \beta \neq \emptyset$ for all $n \geq N$. This shows that \bar{f} is strong mixing.

Theorem 3.7. Let X be a compact metric space and $f: X \rightarrow X$ be a continuous map. Then the following conditions are equivalent.
(1) \bar{f} is mild mixing.
(2) f is mild mixing.

Proof. (1) \Rightarrow (2): Suppose that \bar{f} is mild mixing. For any transitive dynamical system (Y, g), we will show that $(X \times Y, f \times g)$ is a transitive dynamical system.

Let $U_{1} \times V_{1}$ and $U_{2} \times V_{2}$ be two non-empty open subsets of $X \times Y$. Then $e\left(U_{1}\right) \times V_{1}$ and $e\left(U_{2}\right) \times V_{2}$ are two non-empty open subsets of $2^{X} \times Y$. Since $\bar{f} \times g$ is transitive, there are a positive integer n and a point $(A, y) \in e\left(U_{1}\right) \times V_{1}$ such that

$$
(\bar{f} \times g)^{n}(A, y)=\left(\bar{f}^{n}(A), g^{n}(y)\right) \in e\left(U_{2}\right) \times V_{2}
$$

We pick a point $x \in A \subset U_{1}$. Then $f^{n}(x) \in \bar{f}^{n}(A) \subset U_{2}$. Thus $(x, y) \in U_{1} \times V_{1}$ and

$$
(f \times g)^{n}(x, y)=\left(f^{n}(x), g^{n}(y)\right) \in U_{2} \times V_{2} .
$$

Hence $(X \times Y, f \times g)$ is a transitive dynamical system. This shows that f is mild mixing.
$(2) \Rightarrow(1)$: Suppose that f is mild mixing. For any transitive dynamical system (Y, g), we will show that $\left(2^{X} \times Y, \bar{f} \times g\right)$ is a transitive dynamical system.

Let $\alpha_{1} \times V_{1}$ and $\alpha_{2} \times V_{2}$ be two non-empty open subsets of $2^{X} \times Y$. Then there are non-empty open subsets $U_{1}^{1}, \cdots, U_{k}^{1}, U_{1}^{2}, \cdots, U_{k}^{2}$ of X such that

$$
<U_{1}^{1}, \cdots, U_{k}^{1}>\subset \alpha_{1} \text { and }<U_{1}^{2}, \cdots, U_{k}^{2}>\subset \alpha_{2}
$$

Since f is mild mixing, $(X \times Y, f \times g)$ is a transitive dynamical system. By using the induction, we get that

$$
\left(X^{k} \times Y, f \times \cdots \times f \times g\right)
$$

is a transitive dynamical system. Thus, for two non-empty open subsets

$$
U_{1}^{1} \times \cdots \times U_{k}^{1} \times V_{1} \text { and } U_{1}^{2} \times \cdots \times U_{k}^{2} \times V_{2}
$$

of $X^{k} \times Y$, there are a positive integer n and a point

$$
\left(x_{1}, \cdots, x_{k}, y\right) \in U_{1}^{1} \times \cdots \times U_{k}^{1} \times V_{1}
$$

such that

$$
\begin{aligned}
(f \times \cdots \times f \times g)^{n}\left(x_{1}, \cdots, x_{k}, y\right) & =\left(f^{n}\left(x_{1}\right), \cdots, f^{n}\left(x_{k}\right), g^{n}(y)\right) \\
& \in U_{1}^{2} \times \cdots \times U_{k}^{2} \times V_{2}
\end{aligned}
$$

Thus $f^{n}\left(x_{i}\right) \in U_{i}^{2}$ for every $i=1, \cdots, k$ and $g^{n}(y) \in V_{2}$. Let $A=$ $\left\{x_{1}, \cdots, x_{k}\right\}$. Then

$$
A \in<U_{1}^{1}, \cdots, U_{k}^{1}>\subset \alpha_{1} \text { and } \bar{f}^{n}(A) \in<U_{1}^{2}, \cdots, U_{k}^{2}>\subset \alpha_{2}
$$

Hence

$$
(A, y) \in \alpha_{1} \times V_{1} \text { and }\left(\bar{f}^{n}(A), g^{n}(y)\right)=(\bar{f} \times g)^{n}(A, y) \in \alpha_{2} \times V_{2}
$$

Therefore $\left(2^{X} \times Y, \bar{f} \times g\right)$ is a transitive dynamical system. This shows that \bar{f} is mild mixing.

4. Specification and totally transitivity

Definition 4.1. A map $f: X \rightarrow X$ is called to have specification if for any positive number ϵ there is a positive number $M(\epsilon)$ such that for any integer $k \geq 2$ and any k points x_{1}, \cdots, x_{k} of X, and any $2 k$ non-negative integers

$$
a_{1} \leq b_{1}<a_{2} \leq b_{2}<\cdots<a_{k} \leq b_{k}
$$

with $a_{i}-b_{i-1} \geq M(\epsilon)$ for each $i=2, \cdots, k$ there is a point x of X satisfying

$$
d\left(f^{n}(x), f^{n}\left(x_{i}\right)\right)<\epsilon
$$

for every $n=a_{i}, \cdots, b_{i}$ and every $i=2, \cdots, k$.
Theorem 4.2. Let X be a compact metric space and $f: X \rightarrow X$ be a continuous map. Then the following conditions are equivalent.
(1) \bar{f} has specification.
(2) f has specification.

Proof. (1) $\Rightarrow(2)$: Suppose that \bar{f} has specification. Let $\epsilon>0$ and let $M=M(\epsilon)$ be a positive number as in the definition of specification for \bar{f}. For any integer $k \geq 2$, we take any k points x_{1}, \cdots, x_{k} of X and any $2 k$ non-negative integers

$$
a_{1} \leq b_{1}<a_{2} \leq b_{2}<\cdots<a_{k} \leq b_{k}
$$

with $a_{i}-b_{i-1} \geq M$ for every $i=2, \cdots, k$. We denote $A_{i}=\left\{x_{i}\right\}$ for each $i=1, \cdots, k$, then $A_{1}, \cdots, A_{k} \in 2^{X}$. Since \bar{f} has specification, there is a point A of 2^{X} such that

$$
H\left(\bar{f}^{n}(A), \bar{f}^{n}\left(A_{i}\right)\right)<\epsilon
$$

for all $n=a_{i}, \cdots, b_{i}$ and all $i=1, \cdots, k$. Since

$$
\bar{f}^{n}(A) \subset N\left(\bar{f}^{n}\left(A_{i}\right), \epsilon\right)=N\left(f^{n}\left(x_{i}\right), \epsilon\right)
$$

we pick a point $x \in A$, then we have

$$
d\left(f^{n}(x), f^{n}\left(x_{i}\right)\right)<\epsilon
$$

for all $n=a_{i}, \cdots, b_{i}$ and all $i=1, \cdots, k$. Thus f has specification.
$(2) \Rightarrow(1)$: Suppose that f has specification. Let $\epsilon>0$ and let $M=$ $M\left(\frac{\epsilon}{3}\right)$ be a positive number as in the definition of specification for f. For any integer $k \geq 2$, we take any k points A_{1}, \cdots, A_{k} of 2^{X} and any $2 k$ non-negative integers

$$
a_{1} \leq b_{1}<a_{2} \leq b_{2}<\cdots<a_{k} \leq b_{k}
$$

with $a_{i}-b_{i-1} \geq M$ for every $i=2, \cdots, k$. Since $f, \cdots, f^{b_{k}}$ are uniformly continuous, there exists a $\delta>0$ such that

$$
d(x, y)<\delta \text { implies } d\left(f^{i}(x), f^{i}(y)\right)<\frac{\epsilon}{3}
$$

for all $i=0,1, \cdots, b_{k}$. For each $i=1, \cdots, k,\left\{N(x, \delta) \mid x \in A_{i}\right\}$ is an open cover of A_{i}. Since A_{i} is compact, there are finitely many points $x_{1}^{i}, \cdots, x_{m_{i}}^{i}$ of A_{i} such that

$$
A_{i} \subset \cup_{t=1}^{m_{i}} N\left(x_{t}^{i}, \delta\right) .
$$

For k points $x_{t_{1}}^{1}, \cdots, x_{t_{k}}^{k}$ of X where $1 \leq t_{i} \leq m_{i}$ and $1 \leq i \leq k$, since f has specification, there is a point $x\left(t_{1}, \cdots, t_{k}\right)$ of X such that

$$
d\left(f^{n}\left(x\left(t_{1}, \cdots, t_{k}\right)\right), f^{n}\left(x_{t_{i}}^{i}\right)\right)<\frac{\epsilon}{3}
$$

for all $n=a_{i}, \cdots, b_{i}$ and all $i=1, \cdots, k$. Let

$$
A=\left\{x\left(t_{1}, \cdots, t_{k}\right\} \mid 1 \leq i \leq k, 1 \leq t_{i} \leq m_{i}\right\}
$$

Then $A \in 2^{X}$. Let $i=1, \cdots, k$ and $1 \leq t_{i} \leq m_{i}$. Since

$$
d\left(f^{n}\left(x\left(t_{1}, \cdots, t_{k}\right)\right), \bar{f}^{n}\left(A_{i}\right)\right) \leq d\left(f^{n}\left(x\left(t_{1}, \cdots, t_{k}\right)\right), f^{n}\left(x_{t_{i}}^{i}\right)\right)<\frac{\epsilon}{3}
$$

we have

$$
\bar{f}^{n}(A) \subset N\left(\bar{f}^{n}\left(A_{i}\right), \frac{\epsilon}{3}\right)
$$

for all $n=a_{i}, \cdots, b_{i}$. Given any $x \in A_{i}$, there exists a t_{i} such that $x \in N\left(x_{t_{i}}^{i}, \delta\right)$. Since $d\left(x_{t_{i}}^{i}, x\right)<\delta$, we have $d\left(f^{n}\left(x_{t_{i}}^{i}\right), f^{n}(x)\right)<\frac{\epsilon}{3}$ for all $n=a_{i}, \cdots, b_{i}$. Choose any

$$
t_{1}, \cdots, t_{i-1}, t_{i+1}, \cdots, t_{k}
$$

then we have

$$
\begin{aligned}
d\left(f^{n}(x), \bar{f}^{n}(A)\right) & \leq d\left(f^{n}(x), f^{n}\left(x\left(t_{1}, \cdots, t_{k}\right)\right)\right. \\
& \leq d\left(f^{n}(x), f^{n}\left(x_{t_{i}}^{i}\right)\right)+d\left(f^{n}\left(x_{t_{i}}^{i}\right), f^{n}\left(x\left(t_{1}, \cdots, t_{k}\right)\right)\right. \\
& <\frac{\epsilon}{3}+\frac{\epsilon}{3}=\frac{2}{3} \epsilon
\end{aligned}
$$

Thus $\bar{f}^{n}\left(A_{i}\right) \subset N\left(\bar{f}^{n}(A), \frac{2}{3} \epsilon\right.$. Hence

$$
H\left(\bar{f}^{n}(A), \bar{f}^{n}\left(A_{i}\right)\right) \leq \frac{2}{3} \epsilon<\epsilon
$$

for all $i=a_{i}, \cdots, b_{i}$. Therefore \bar{f} has specification.

In [1], Bowen introduced the concept of Property P to characterize chaotic phenomenon of flow with the specification property.

A map $f: X \rightarrow X$ is called to have Property P if for any two nonempty open subsets U_{1}, U_{2} of X there exists a positive integer N such that, for any integer $k \geq 2$ and any $s=(s(1), s(2), \cdots, s(k)) \in\{1,2\}^{k}$ there is a point x of X satisfying

$$
x \in U_{s(1)}, f^{N}(x) \in U_{s(2)}, \cdots, f^{(k-1) N}(x) \in U_{s(k)}
$$

Theorem 4.3. [9] Let X be a compact metric space and $f: X \rightarrow X$ be a continuous map. If f has Property P then f is weak mixing.

Theorem 4.4. Let X be a compact metric space and $f: X \rightarrow X$ be a continuous map. Then the following conditions are equivalent.
(1) \bar{f} has Property P.
(2) f has Property P.

Proof. $(1) \Rightarrow(2)$: Suppose that \bar{f} has Property P. Let U_{1} and U_{2} be any two non-empty open subsets of X. By Lemma 3.1, $e\left(U_{1}\right)$ and $e\left(U_{2}\right)$ are non-empty open subsets of 2^{X}. Since \bar{f} has Property P, there is a positive integer N such that, for any integer $k \geq 2$ and any $s=$ $(s(1), s(2), \cdots, s(k)) \in\{1,2\}^{k}$, there is a point A of 2^{X} satisfying

$$
A \in e\left(U_{s(1)}\right), \bar{f}^{N}(A) \in e\left(U_{s(2)}\right), \cdots, \bar{f}^{(k-1) N}(A) \in e\left(U_{s(k)}\right)
$$

Thus we have

$$
A \subset U_{s(1)}, \bar{f}^{N}(A) \in U_{s(2)}, \cdots, \bar{f}^{(k-1) N}(A) \subset U_{s(k)}
$$

Picking a point $x \in A$, then we have

$$
x \in U_{s(1)}, f^{N}(x) \in U_{s(2)}, \cdots, f^{(k-1) N}(x) \in U_{s(k)}
$$

Hence f has Property P.
$(2) \Rightarrow(1)$: Suppose that f has Property P. Let α_{1}, α_{2} be any two nonempty open subsets of 2^{X}. Choose open subsets $U_{1}^{1}, \cdots, U_{m}^{1}, U_{1}^{2}, \cdots, U_{m}^{2}$ of X such that

$$
<U_{1}^{1}, \cdots, U_{m}^{1}>\subset \alpha_{1} \text { and }<U_{1}^{2}, \cdots, U_{m}^{2}>\subset \alpha_{2}
$$

Since f has Property P, for two non-empty open subsets U_{i}^{1} and U_{i}^{2} of X there is a positive integer N_{i} such that for any integer $k_{i} \geq 2$ and any

$$
s=\left(s(1), s(2), \cdots, s\left(k_{i}\right)\right) \in\{1,2\}^{k_{i}}
$$

there is a point x_{i} of X satisfying

$$
x_{i} \in U_{i}^{s(1)}, f^{N_{i}}\left(x_{i}\right) \in U_{i}^{s(2)}, \cdots, f^{\left(k_{i}-1\right) N_{i}}\left(x_{i}\right) \in U_{i}^{s\left(k_{i}\right)}
$$

Let N denote the least common multiple of $N_{1}, N_{2}, \cdots, N_{m}$. For any integer $k \geq 2$ and any $s=(s(1), s(2), \cdots, s(k)) \in\{1,2\}^{k}$, we denote

$$
p_{i}=\frac{N}{N_{i}}, i=1,2, \cdots, m
$$

and

$$
s=(s(1), \cdots, s(1), s(2), \cdots, s(2), \cdots, s(k), \cdots, s(k)) \in\{1,2\}^{k p_{i}}
$$

Then there is a point y_{i} of X such that

$$
\begin{gathered}
y_{i} \in U_{i}^{s(1)}, \quad f^{N_{i}}\left(y_{i}\right) \in U_{i}^{s(1)}, \cdots, f^{\left(p_{i}-1\right) N_{i}}\left(y_{i}\right) \in U_{i}^{s(1)} \\
f^{p_{i} N_{i}}\left(y_{i}\right) \in U_{i}^{s(2)}, f^{\left(p_{i}+1\right) N_{i}}\left(y_{i}\right) \in U_{i}^{s(2)}, \cdots, f^{\left(2 p_{i}-1\right) N_{i}}\left(y_{i}\right) \in U_{i}^{s(2)} \\
\vdots \\
f^{(k-1) p_{i} N_{i}}\left(y_{i}\right) \in U_{i}^{s(k)}, f^{\left((k-1) p_{i}+1\right) N_{i}}\left(y_{i}\right) \in U_{i}^{s(k)}, \cdots, \\
f^{\left(k p_{i}-1\right) N_{i}}\left(y_{i}\right) \in U_{i}^{s(k)} .
\end{gathered}
$$

Thus we have

$$
y_{i} \in U_{i}^{s(1)}, f^{N}\left(y_{i}\right) \in U_{i}^{s(2)}, \cdots, f^{(k-1) N}\left(y_{i}\right) \in U_{i}^{s(k)}
$$

Let $A=\left\{y_{1}, y_{2}, \cdots, y_{m}\right\}$. Then $A \in 2^{X}$ and

$$
\begin{gathered}
A \in<U_{1}^{s(1)}, U_{2}^{s(1)}, \cdots, U_{m}^{s(1)}>\subset \alpha_{s(1)} \\
\bar{f}^{N}(A) \in<U_{1}^{s(2)}, U_{2}^{s(2)}, \cdots, U_{m}^{s(2)}>\subset \alpha_{s(2)} \\
\vdots \\
\bar{f}^{(k-1) N}(A) \in<U_{1}^{s(k)}, U_{2}^{s(k)}, \cdots, U_{m}^{s(k)}>\subset \alpha_{s(k)} .
\end{gathered}
$$

Hence \bar{f} has Property P.
Finally, we discuss totally transitivity.
Theorem 4.5. Let X be a compact metric space and $f: X \rightarrow X$ be a continuous map. If \bar{f} is totally transitive, then so is f. However, the converse is not true.

Proof. Since \bar{f} is totally transitive, for every positive integer $k, \bar{f}^{k}=$ $\overline{f^{k}}$ is transitive. By Theorem 3.6 of [6], f^{k} is transitive. Thus f is totally transitive.

In general, the converse of Theorem 4.5 is not true.

References

[1] R. Bowen, Periodic points and measures of Anosov diffeomorphisms, Trans. Amer. Math. Soc. 154 (1971), 377-397.
[2] M. Denker, C. Grillenberger, and K. Sigmund, Ergodic theory on compact spaces, Lecture notes in mathematics 527, Springer-Verlag 1976.
[3] R. Gu and W. Guo, On mixing property in set-valued discrete systems, chaos, soultions and Fractals, 28 (2006), 747-754.
[4] S. Li, Dynamical properties of the shift maps on the inverse limit spaces, Ergodic Th. and Dynam. Sys. 12 (1992), 95-108.
[5] R. Peleg, Weak disjointness of transformation groups, Proc. Amer. Math. Soc. 33 (1972), 165-170.
[6] H. Roman-Flores, A note on transitivity in set-valued discrete systems, Chaos, Solitons and Fractals, 17 (2003), 99-104.
[7] S. Shao, Dynamical systems and families, Doctorial thesis of University of Science and Technology of China, 2004.
[8] J. Xiang and Z. Yang, Chaos caused by a topologically mixing map, Dynamical systems and related topics, Singapore : World Scientific, (1991), 550-572.
[9] R. Yang and S. Shen, Pseudo-orbit-tracing and completely positive entropy, Acta Math. Sinica, 42 (1999), 99-104.
*
Department of Mathematics
Hoseo University
Cheonan 31066, Republic of Korea
E-mail: kblee@hoseo.edu

[^0]: Received May 31, 2017; Accepted July 24, 2017.
 2010 Mathematics Subject Classification: Primary 37B40.
 Key words and phrases: set-valued discrete dynamical systems, Deveney's chaoticity, mixing, specification.

