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A STUDY ON THE SET-VALUED DISCRETE

DYNAMICAL SYSTEM (2X , f)

Kyung Bok Lee*

Abstract. This paper is devoted to some dynamical properties
such as transitivity, mixing and specification of two discrete dy-
namical systems (X, f) and (2X , f) on compact metric spaces.

1. Introduction and backgrounds

S. Li [4] proved that the shift map σf : lim←−(X, f) ← lim←−(X, f) in-
duced by a continuous map f on a compact metric space X is chaotic in
the sense of Devaney if and only if (X, f) is chaotic in the sense of De-
vaney. Moreover, Roman-Flore [6] showed that the Devaney’s chaoticity
of (X, f) implies the Devaney’s chaoticity of the set-valued dynamical
system (2X , f), and gave a question whether the converse of the state-
ment in true or not.

In this paper we give a partial answer about the above question, and
study some relationship between two dynamics of (X, f) and (2X , f).
More precisely, we show that if Devaney chaotic and weak mixing then
f is Devaney chaotic; f is strong [resp. mild] mixing if and only if f is
strong [resp. mild] mixing , respectively; f is has a specification [resp.
Property P] if and only if f has specification. [Property P], respectively.

We start with the definition of Devaney chaos. Let (X, d) be a
compact metric space and f : X → X be a continuous map. A map
f is called to be Devaney chaotic [2] if f satisfies the following three
conditions.

(1) f is transitive that is for every pair U, V of non-empty open subsets
of X there is a positive integer n such that fn(U) ∩ V ̸= ∅.
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(2) f is periodically dense that is the set of periodic points of f is
dense in X.

(3) f has sensitive dependence on initial conditions that is there exists
a δ > 0 such that for any x ∈ X, there exist a sequence (xk) in X
and a sequence (nk) of positive integers such that limk→∞ xk = x
and d(fnk(x), fnk(xk)) ≥ δ for all k.

2. Preliminaries

In this paper, we will investigate the relationships between the mixing
property of (2X , f) and the mixing property of (X, f). In addition, we
discuss totally transitivity and specification for the set-valued discrete
dynamical system (2X , f).

For a compact metric space (X, d), let 2X be the family of all non-
empty compact subsets of X. A metric H on 2X is defined as follows:

Definition 2.1. If ϵ > 0 and A ∈ 2X , then

N(A, ϵ) = {x ∈ X|d(x, a) < ϵ for some a ∈ A}.
If A, B ∈ 2X , then define

H(A, B) = inf{ϵ > 0|A ⊂ N(B, ϵ) and B ⊂ N(A, ϵ)}.
In fact, as will be proved in Theorem 2.2, H is a metric on 2X . It will
be called the Hausdorff metric induced by d.

Theorem 2.2. The function H : 2X × 2X → [0, ∞) is a metric on
2X .

Proof. We will prove the triangle inequality. Let A, B, C ∈ 2X . We
will show that

(*) H(A, C) ≤ H(A, B) +H(B, C).

To prove (*), let η > 0 and let δ = η/2. From the definition of H we
see that

(1) A ⊂ N(B, H(A, B) + δ), and
(2) B ⊂ N(C, H(B, C) + δ).

Let a ∈ A. By (1), there exists b ∈ B such that

(3) d(a, b) < H(A, B) + δ.

By (2), there exists c ∈ C such that

(4) d(b, c) < H(B, C) + δ.
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Using (3), (4), and the definition of δ, it follows easily that

d(a, c) < H(A, B) +H(B, C) + η.

Therefore, since a was an arbitrary point of A, we have proved that

(5) A ⊂ N(C, H(A, B) +H(B, C) + η).

A similar argument shows that

(6) C ⊂ N(A, H(A, B) +H(B, C) + η).

Since η was an arbitrary positive number, it follows from (5), (6), and
the definition of H(A, C) that (*) holds. This completes the proof of
Theorem 2.2.

Definition 2.3. Let (An) be a sequence in 2X . Then define

lim inf An = {x ∈ X| if U is a neighborhood of x, then U ∩An ̸= ∅
for all but finitely many n}

lim supAn = {x ∈ X| if U is a neighborhood of x, then U ∩An ̸= ∅
for infinitely many n}

If lim inf An = A = lim supAn, then we say that the sequence (An)
converges to A, written limn→∞An = A.

Remark 2.4. Let (An) be a sequence in 2X . As is easy to verify :

(1) lim inf An ⊂ lim supAn.
(2) lim inf An and lim supAn are each closed subsets of X.
(3) If (Ani) is a subsequence of (An), then

lim inf An ⊂ lim inf Ani and lim supAni ⊂ lim supAn.

Theorem 2.5. Let (An) be a sequence in 2X . If (An) converges to
A in the sense of Definition 2.3, then A ∈ 2X and (An) converges to A
with respect to the Hausdorff metric. Conversely, if (An) converges with
respect to the Hausdorff metric to A, then (An) converges to A in the
sense of Definition 2.3.

Proof. First assume (An) converges to A in the sense of Definition 2.3.
Since X is compact and each An ̸= ∅, it follows that lim supAn ̸= ∅.
Thus, since A = lim supAn, we have that A ̸= ∅. Also, by Remark 2.4,
A is a compact subset of X. Hence A ∈ 2X . Now we show that (An)
converges to A with respect to the Hausdorff metric. Let ϵ > 0. Note
that

(1) lim supAn = A ⊂ Nd(A, ϵ)

and that, since Nd(A, ϵ) is an open subset of X,

(2) the complement of Nd(A, ϵ) is a compact subset of X.
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Using (1), (2), and Remark 2.4, it follows that there exists a natural
number N1 such that

(3) An ⊂ Nd(A, ϵ) for each n ≥ N1.

Since A is a non-empty compact subset of X, there exist a finite
number of open subsets U1, · · · , Uk of X such that A ⊂ ∪ki=1Ui, the
diameter of each Ui is less than ϵ, and Ui∩A ̸= ∅ for each i = 1, · · · , k.
Then, since A = lim inf An, there exists for each i = 1, · · · , k a
natural number Mi such that An ∩ Ui ̸= ∅ whenever n ≥ Mi. Let
N2 = max{M1, · · · , Mk}. It is easy to verify that

(4) A ⊂ Nd(An, ϵ) for each n ≥ N2.

Let N = max{N1, N2}. Then, by (3), (4), and the definition of H we
see that H(A, An) < ϵ for each n ≥ N . Therefore we have proved that
(An) converges to A with respect to the Hausdorff metric. This proves
half of Theorem. To prove the other half, assume (An) converges to an
A ∈ 2X with respect to the Hausdorff metric. We first show that

(5) lim supAn ⊂ A.

To verify (5), let ϵ > 0. Since (An) converges to A with respect
to the Hausdorff metric, there exists a natural number N such that
H(A, An) < ϵ for each n ≥ N . This implies that no point of lim supAn

can be more that ϵ from every pont of A. Therefore, since ϵ > 0 was
arbitrary, we have proved (5). Next we show that

(6) A ⊂ lim inf An.

To verify (6), let ϵ > 0. Let a0 ∈ A and let U = Nd(a0, ϵ). Since
(An) converges to A with respect to the Hausdorff metric, there exists a
natural number N such that H(A, An) < ϵ for each n ≥ N . Hence, by
the definition of H, we have that A ⊂ Nd(An, ϵ) for each n ≥ N . Thus
U ∩An ̸= ∅ for each n ≥ N . Therefore, since ϵ > 0 was arbitrary,

a0 ∈ lim inf An.

This proves (6). Combining (5) and (6) and using Remark 2.4, we see
that (An) converges to A in the sense of Definition 2.3.

Theorem 2.6. The space 2X is compact.

Proof. To prove that 2X is compact, it suffices by Theorem 2.5 to
show that every sequence in 2X has a convergent subsequence in the
sense of Definition 2.3. To do this, let (An) be a sequence in 2X . We
define sequences

(A1
n) : A1

1, A1
2, · · · , A1

n, · · ·
(A2

n) : A2
1, A2

2, · · · , A2
n, · · ·
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...
(An

n) : An
1 , An

2 , · · · , An
n, · · ·

...
inductively as follows. Let β = {Un} be a countable basis for X. Define
(A1

n) by A1
n = An for each n = 1, 2, · · · . Assume inductively that we

have defined the sequence (Ak
n). We define (Ak+1

n ) in one of the following
two ways :

(1) If (Ak
n) has a subsequence (Ak

ni
) such that (lim supAk

ni
) ∩ Uk = ∅,

then let (Ak+1
n ) be one such subsequence of (Ak

n).
(2) If every subsequence of (Ak

n) has a point of its lim sup in Uk, then
let (Ak+1

n ) be given by Ak+1
n = Ak

n for each n = 1, 2, · · · .
Now, having defined the sequence (Ak

n) for each k = 1, 2, · · · , consider
the ’diagonal sequence’ (An

n). Clearly (An
n) is a subsequence of (An), and

we will show it converges. Suppose (An
n) does not converges. Then, by

Remark 2.4, there exists a point p ∈ lim supAn
n such that p /∈ lim inf An

n.
Hence, there exists Um ∈ β such that p ∈ Um and such that Um∩Ani

ni
= ∅

for some subsequence (Ani
ni
) of (An

n). Clearly (Ani
ni
) is a subsequence of

(Am
n ). Thus (Am

n ) satisfies (1) above. Hence

(lim supAm+1
n ) ∩ Um = ∅.

Therefore, since (An
n)

∞
n=m+1 is a subsequence of (Am+1

n ), it follows us-
ing Remark 2.4 that (lim supAn

n)∩Um = ∅. But, since p ∈ (lim supAn
n)∩

Um, we have a contradiction. Therefore (An
n) converges. This completes

the proof of Theorem.

For any finite non-empty open subsets U1, · · · , Un of X, let

< U1, · · · , Un >= {A ∈ 2X | A ⊂ ∪ni=1Ui and A ∩ Ui ̸= ∅
for all 1 ≤ i ≤ n}.

Theorem 2.7. Let (X, d) be a compact metric space. Then the set
β of all subsets of 2X of the form < U1, · · · , Un > is a basis for 2X .

Proof. First we show that < U1, · · · , Un > is an open subset of 2X .
Let

A ∈< U1, · · · , Un > .

Then A ⊂ ∪ni=1Ui. For each i = 1, · · · , n, since A ∩ Ui ̸= ∅, we can
choose a point ai ∈ A ∩ Ui. There exists ϵ > 0 such that

Nd(A, ϵ) ⊂ ∪ni=1Ui and Nd(ai, ϵ) ⊂ Ui for all 1 ≤ i ≤ n.



346 Kyung Bok Lee

Let B ∈ NH(A, ϵ). Then B ⊂ Nd(A, ϵ) ⊂ ∪ni=1Ui. For each i =
1, · · · , n, since

ai ∈ A ⊂ Nd(B, ϵ),

there is a point bi ∈ B such that d(ai, bi) < ϵ. Since bi ∈ Nd(ai, ϵ) ⊂ Ui,
we have

B ∩ Ui ̸= ∅ for all 1 ≤ i ≤ n.

Thus B ∈< U1, · · · , Un > so NH(A, ϵ) ⊂< U1, · · · , Un >. Hence
< U1, · · · , Un >is an open subset of 2X .

Next we show that β is a basis for 2X . Let α be an open subset of 2X .
Given any A ∈ α, there exists ϵ > 0 such that NH(A, ϵ) ⊂ α. Since A
is compact, there exist finitely many points a1, · · · , an of A such that

A ⊂ ∪ni=1Nd

(
ai,

ϵ

3

)
.

Clearly, A ∈< Nd(a1,
ϵ
3), · · · , Nd(an,

ϵ
3) >. Let B ∈< Nd(a1,

ϵ
3), · · · , Nd(an,

ϵ
3) >. For any b ∈ B, since B ⊂ ∪ni=1Nd(ai,

ϵ
3), there

exists i such that b ∈ Nd(ai,
ϵ
3). Thus

B ⊂ Nd

(
A,

ϵ

3

)
.

For any a ∈ A, there exists i such that a ∈ Nd(ai,
ϵ
3), that is,

d(ai, a) < ϵ
3 . Since

B ∩Nd

(
ai,

ϵ

3

)
̸= ∅,

we can choose a point b ∈ B such that d(ai, b) < ϵ
3 . Then we have

d(a, b) ≤ d(a, ai) + d(ai, b) <
ϵ

3
+

ϵ

3
=

2

3
ϵ.

Thus A ⊂ Nd(B, 2
3ϵ). Hence H(A, B) ≤ 2

3ϵ < ϵ so we get

A ∈< Nd

(
a1,

ϵ

3

)
, · · · , Nd

(
an,

ϵ

3

)
>⊂ NH(A, ϵ) ⊂ α.

Therefore β is a basis for 2X .

If f : X → X is a continuous map then by f(A) = {f(a)|a ∈ A} for
every A ∈ 2X one defines a continuous map f : 2X → 2X .

A map f : X → X is called to be totally transitive if fn : X → X is
transitive for every positive integer n. A map f : X → X is called to be
weak mixing if the product map f × f : X ×X → X ×X is transitive,
and f is strong mixing if for any two non-empty open subsets U, V of
X there is a positive integer N such that

fn(U) ∩ V ̸= ∅
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for every integer n ≥ N .
In [8], Xiong and Yang investigated the chaos caused by a mixing

map and revealed a kind of quite complex phenomenon.
A map f : X → X is called to be weakly chaotic in the sense of Xiong

if there is a c−dense Fσ−-subset C of X such that for any subset A of
C and any continuous map F : A → X there is an increasing positive
integer sequence (pn) such that

lim
n→∞

fpn(x) = F (x)

for each x ∈ A. f is called to be chaotic in the sense of Xiong if for
any given increasing positive integer sequence (pn) there is a c−dense
Fσ-subset C of X such that for any subset A of C and any continu-
ous map F : A → X there is a subsequence (pni) of (pn) such that
limi→∞ fpni (x) = F (x) for each x ∈ A.

3. Mixing and transivity

Let A be a subset of X. Then we define the extension of A to 2X as

e(A) = {K ∈ 2X |K ⊂ A}.
The following lemma is cited from [6].

Lemma 3.1. If U is a non-empty open subset of X, then

(1) e(U) ̸= ∅ if and only if U ̸= ∅.
(2) e(U) is a non-empty open subset of 2X .
(3) e(U ∩ V ) = e(U) ∩ e(V ).

(4) f
n
= fn for all positive integer n.

(5) f(e(U)) ⊂ e(f(U)).

In [7], Shao studied the double properties and family versions of mix-
ing.

Theorem 3.2. [7] Let X be a compact metric space and f : X → X
be a continuous map. Then the following conditions are equivalent.

(1) f is weak mixing.
(2) f is weak mixing.
(3) f is transitive.

Remark 3.3. [6] Roman-Flores showed that f transitive implies f
transitive. Hence, Theorem 3.2 generalizes the result of Roman-Flores.
In addition, the theorem shows that the concepts of weak mixing and
transitivity coincide for the set-valued discrete dynamical system (2X , f).
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Devaney’s chaoticity of f does not imply Devaney’s chaoticity of f
as shown by the following example.

Example 3.4. Let X = {0, 1} be a discrete space and f : X →
X be a continuous map with f(0) = 1 and f(1) = 0. Clearly, f is
transitive and periodically dense. so f is Devaney chaotic. Since 2X =
{{0}, {1}, {0, 1}} is a discrete space with two periodic orbits, f is not
Devaney chaotic.

However, we have the following result.

Theorem 3.5. Let X be a compact metric space and f : X → X be
a continuous map. If f is Devaney chaotic and weak mixing, then f is
Devaney chaotic.

Proof. By Theorem 3.2, it is necessary to prove that if Per(f) is dense
in X then Per(f) is dense in 2X , where Per(f) is the set of periodic
points of f .

In fact, let α be a non-empty open subset of 2X . We choose non-
empty open subsets U1, · · · , Uk of X such that

< U1, · · · , Uk >⊂ α.

Since Per(f) is dense in X, there are periodic points p1, · · · , pk of f
such that pi ∈ U for every i = 1, · · · , k. Let A = {p1, · · · , pk}. Then
A ∈ Per(f) and A ∈< U1, · · · , Uk >⊂ α.

This shows that Per(f) is dense in 2X .

Theorem 3.6. Let X be a compact metric space and f : X → X be
a continuous map. Then the following conditions are equivalent.

(1) f is strong mixing.
(2) f is strong mixing.

Proof. (1)⇒(2): Suppose that f is strong mixing. Let U, V be any
two non-empty open subsets of X. Since e(U), e(V ) are non-empty
open subsets of 2X , there is a positive integer N such that

f
n
(e(U)) ∩ e(V ) ̸= ∅ for all n ≥ N.

By Lemma 3.1, we have

f(e(U)) ∩ e(V ) ⊂ e(fn(U)) ∩ e(V ) = e(fn(U) ∩ V ).

Thus

fn(U) ∩ V ̸= ∅ for all n ≥ N .
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This shows that f is strong mixing.
(2)⇒(1): Suppose that f is strong mixing. Let α and β be any two

non-empty open subsets of 2X . We choose non-empty open subsets

U1, · · · , Uk, V1, · · · , Vk

of X such that

< U1, · · · , Uk >⊂ α and < V1, · · · , Vk >⊂ β.

For each i = 1, · · · , k, since f is strong mixing, there exists a positive
integer Ni such that

fn(Ui) ∩ Vi ̸= ∅ for all n ≥ Ni.

Let N = max{N1, · · · , Nk}. For every integer n ≥ N , since fn(Ui) ∩
Vi ̸= ∅, there is a point xi ∈ Ui such that fn(xi) ∈ Vi. Let A =
{x1, · · · , xk}. Then A ∈ 2X and

A ∈< U1, · · · , Uk >⊂ α and f
n
(A) ∈< V1, · · · , Vk >⊂ β.

Thus f
n
(α) ∩ β ̸= ∅ for all n ≥ N . This shows that f is strong

mixing.

Theorem 3.7. Let X be a compact metric space and f : X → X be
a continuous map. Then the following conditions are equivalent.

(1) f is mild mixing.
(2) f is mild mixing.

Proof. (1)⇒(2): Suppose that f is mild mixing. For any transitive
dynamical system (Y, g), we will show that (X×Y, f×g) is a transitive
dynamical system.

Let U1 × V1 and U2 × V2 be two non-empty open subsets of X × Y .
Then e(U1) × V1 and e(U2) × V2 are two non-empty open subsets of
2X × Y . Since f × g is transitive, there are a positive integer n and a
point (A, y) ∈ e(U1)× V1 such that

(f × g)n(A, y) = (f
n
(A), gn(y)) ∈ e(U2)× V2.

We pick a point x ∈ A ⊂ U1. Then fn(x) ∈ f
n
(A) ⊂ U2. Thus

(x, y) ∈ U1 × V1 and

(f × g)n(x, y) = (fn(x), gn(y)) ∈ U2 × V2.

Hence (X × Y, f × g) is a transitive dynamical system. This shows
that f is mild mixing.
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(2)⇒(1): Suppose that f is mild mixing. For any transitive dynamical
system (Y, g), we will show that (2X×Y, f×g) is a transitive dynamical
system.

Let α1 × V1 and α2 × V2 be two non-empty open subsets of 2X × Y .
Then there are non-empty open subsets U1

1 , · · · , U1
k , U2

1 , · · · , U2
k of

X such that

< U1
1 , · · · , U1

k >⊂ α1 and < U2
1 , · · · , U2

k >⊂ α2.

Since f is mild mixing, (X × Y, f × g) is a transitive dynamical
system. By using the induction, we get that

(Xk × Y, f × · · · × f × g)

is a transitive dynamical system. Thus, for two non-empty open subsets

U1
1 × · · · × U1

k × V1 and U2
1 × · · · × U2

k × V2

of Xk × Y , there are a positive integer n and a point

(x1, · · · , xk, y) ∈ U1
1 × · · · × U1

k × V1

such that

(f × · · · × f × g)n(x1, · · · , xk, y) = (fn(x1), · · · , fn(xk), gn(y))

∈ U2
1 × · · · × U2

k × V2.

Thus fn(xi) ∈ U2
i for every i = 1, · · · , k and gn(y) ∈ V2. Let A =

{x1, · · · , xk}. Then

A ∈< U1
1 , · · · , U1

k >⊂ α1 and f
n
(A) ∈< U2

1 , · · · , U2
k >⊂ α2.

Hence

(A, y) ∈ α1 × V1 and (f
n
(A), gn(y)) = (f × g)n(A, y) ∈ α2 × V2.

Therefore (2X × Y, f × g) is a transitive dynamical system. This shows
that f is mild mixing.
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4. Specification and totally transitivity

Definition 4.1. A map f : X → X is called to have specification
if for any positive number ϵ there is a positive number M(ϵ) such that
for any integer k ≥ 2 and any k points x1, · · · , xk of X, and any 2k
non-negative integers

a1 ≤ b1 < a2 ≤ b2 < · · · < ak ≤ bk

with ai − bi−1 ≥ M(ϵ) for each i = 2, · · · , k there is a point x of X
satisfying

d(fn(x), fn(xi)) < ϵ

for every n = ai, · · · , bi and every i = 2, · · · , k.

Theorem 4.2. Let X be a compact metric space and f : X → X be
a continuous map. Then the following conditions are equivalent.

(1) f has specification.
(2) f has specification.

Proof. (1)⇒(2): Suppose that f has specification. Let ϵ > 0 and let
M = M(ϵ) be a positive number as in the definition of specification for
f . For any integer k ≥ 2, we take any k points x1, · · · , xk of X and
any 2k non-negative integers

a1 ≤ b1 < a2 ≤ b2 < · · · < ak ≤ bk

with ai − bi−1 ≥ M for every i = 2, · · · , k. We denote Ai = {xi} for
each i = 1, · · · , k, then A1, · · · , Ak ∈ 2X . Since f has specification,
there is a point A of 2X such that

H(f
n
(A), f

n
(Ai)) < ϵ

for all n = ai, · · · , bi and all i = 1, · · · , k. Since

f
n
(A) ⊂ N(f

n
(Ai), ϵ) = N(fn(xi), ϵ),

we pick a point x ∈ A, then we have

d(fn(x), fn(xi)) < ϵ

for all n = ai, · · · , bi and all i = 1, · · · , k. Thus f has specification.
(2)⇒(1): Suppose that f has specification. Let ϵ > 0 and let M =

M( ϵ3) be a positive number as in the definition of specification for f .

For any integer k ≥ 2, we take any k points A1, · · · , Ak of 2X and any
2k non-negative integers

a1 ≤ b1 < a2 ≤ b2 < · · · < ak ≤ bk



352 Kyung Bok Lee

with ai − bi−1 ≥ M for every i = 2, · · · , k. Since f, · · · , f bk are
uniformly continuous, there exists a δ > 0 such that

d(x, y) < δ implies d(f i(x), f i(y)) < ϵ
3

for all i = 0, 1, · · · , bk. For each i = 1, · · · , k, {N(x, δ)|x ∈ Ai} is
an open cover of Ai. Since Ai is compact, there are finitely many points
xi1, · · · , ximi

of Ai such that

Ai ⊂ ∪mi
t=1N(xit, δ).

For k points x1t1 , · · · , xktk of X where 1 ≤ ti ≤ mi and 1 ≤ i ≤ k,
since f has specification, there is a point x(t1, · · · , tk) of X such that

d(fn(x(t1, · · · , tk)), fn(xiti)) <
ϵ

3

for all n = ai, · · · , bi and all i = 1, · · · , k. Let

A = {x(t1, · · · , tk}|1 ≤ i ≤ k, 1 ≤ ti ≤ mi}.

Then A ∈ 2X . Let i = 1, · · · , k and 1 ≤ ti ≤ mi. Since

d(fn(x(t1, · · · , tk)), f
n
(Ai)) ≤ d(fn(x(t1, · · · , tk)), fn(xiti)) <

ϵ

3
,

we have

f
n
(A) ⊂ N

(
f
n
(Ai),

ϵ

3

)
for all n = ai, · · · , bi. Given any x ∈ Ai, there exists a ti such that
x ∈ N(xiti , δ). Since d(xiti , x) < δ, we have d(fn(xiti), fn(x)) < ϵ

3 for
all n = ai, · · · , bi. Choose any

t1, · · · , ti−1, ti+1, · · · , tk

then we have

d(fn(x), f
n
(A)) ≤ d(fn(x), fn(x(t1, · · · , tk))

≤ d(fn(x), fn(xiti)) + d(fn(xiti), fn(x(t1, · · · , tk))

<
ϵ

3
+

ϵ

3
=

2

3
ϵ

Thus f
n
(Ai) ⊂ N(f

n
(A), 2

3ϵ. Hence

H(f
n
(A), f

n
(Ai)) ≤

2

3
ϵ < ϵ

for all i = ai, · · · , bi. Therefore f has specification.
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In [1], Bowen introduced the concept of Property P to characterize
chaotic phenomenon of flow with the specification property.

A map f : X → X is called to have Property P if for any two non-
empty open subsets U1, U2 of X there exists a positive integer N such
that, for any integer k ≥ 2 and any s = (s(1), s(2), · · · , s(k)) ∈ {1, 2}k
there is a point x of X satisfying

x ∈ Us(1), fN (x) ∈ Us(2), · · · , f (k−1)N (x) ∈ Us(k).

Theorem 4.3. [9] Let X be a compact metric space and f : X → X
be a continuous map. If f has Property P then f is weak mixing.

Theorem 4.4. Let X be a compact metric space and f : X → X be
a continuous map. Then the following conditions are equivalent.

(1) f has Property P .
(2) f has Property P .

Proof. (1)⇒(2): Suppose that f has Property P . Let U1 and U2

be any two non-empty open subsets of X. By Lemma 3.1, e(U1) and
e(U2) are non-empty open subsets of 2X . Since f has Property P , there
is a positive integer N such that, for any integer k ≥ 2 and any s =
(s(1), s(2), · · · , s(k)) ∈ {1, 2}k, there is a point A of 2X satisfying

A ∈ e(Us(1)), f
N
(A) ∈ e(Us(2)), · · · , f

(k−1)N
(A) ∈ e(Us(k)).

Thus we have

A ⊂ Us(1), f
N
(A) ∈ Us(2), · · · , f

(k−1)N
(A) ⊂ Us(k).

Picking a point x ∈ A, then we have

x ∈ Us(1), fN (x) ∈ Us(2), · · · , f (k−1)N (x) ∈ Us(k).

Hence f has Property P .
(2)⇒(1): Suppose that f has Property P . Let α1, α2 be any two non-

empty open subsets of 2X . Choose open subsets U1
1 , · · · , U1

m, U2
1 , · · · , U2

m

of X such that

< U1
1 , · · · , U1

m >⊂ α1 and < U2
1 , · · · , U2

m >⊂ α2.

Since f has Property P , for two non-empty open subsets U1
i and U2

i of
X there is a positive integer Ni such that for any integer ki ≥ 2 and any

s = (s(1), s(2), · · · , s(ki)) ∈ {1, 2}ki ,
there is a point xi of X satisfying

xi ∈ U
s(1)
i , fNi(xi) ∈ U

s(2)
i , · · · , f (ki−1)Ni(xi) ∈ U

s(ki)
i .
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Let N denote the least common multiple of N1, N2, · · · , Nm. For
any integer k ≥ 2 and any s = (s(1), s(2), · · · , s(k)) ∈ {1, 2}k, we
denote

pi =
N

Ni
, i = 1, 2, · · · , m

and

s = (s(1), · · · , s(1), s(2), · · · , s(2), · · · , s(k), · · · , s(k)) ∈ {1, 2}kpi .

Then there is a point yi of X such that

yi ∈ U
s(1)
i , fNi(yi) ∈ U

s(1)
i , · · · , f (pi−1)Ni(yi) ∈ U

s(1)
i

fpiNi(yi) ∈ U
s(2)
i , f (pi+1)Ni(yi) ∈ U

s(2)
i , · · · , f (2pi−1)Ni(yi) ∈ U

s(2)
i

...
f (k−1)piNi(yi) ∈ U

s(k)
i , f ((k−1)pi+1)Ni(yi) ∈ U

s(k)
i , · · · ,

f (kpi−1)Ni(yi) ∈ U
s(k)
i .

Thus we have

yi ∈ U
s(1)
i , fN (yi) ∈ U

s(2)
i , · · · , f (k−1)N (yi) ∈ U

s(k)
i .

Let A = {y1, y2, · · · , ym}. Then A ∈ 2X and

A ∈< U
s(1)
1 , U

s(1)
2 , · · · , U

s(1)
m >⊂ αs(1)

f
N
(A) ∈< U

s(2)
1 , U

s(2)
2 , · · · , U

s(2)
m >⊂ αs(2)

...
f
(k−1)N

(A) ∈< U
s(k)
1 , U

s(k)
2 , · · · , U

s(k)
m >⊂ αs(k).

Hence f has Property P .

Finally, we discuss totally transitivity.

Theorem 4.5. Let X be a compact metric space and f : X → X be
a continuous map. If f is totally transitive, then so is f . However, the
converse is not true.

Proof. Since f is totally transitive, for every positive integer k, f
k
=

fk is transitive. By Theorem 3.6 of [6], fk is transitive. Thus f is totally
transitive.

In general, the converse of Theorem 4.5 is not true.
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