DOI QR코드

DOI QR Code

FIXED POINT THEOREMS FOR WEAKLY COMPATIBLE MAPS UNDER E.A. PROPERTY IN FUZZY METRIC SPACES

  • Kumar, Sanjay (Department of Mathematics Deenbandhu Chhotu Ram University of Science and Technology)
  • Received : 2010.04.27
  • Accepted : 2010.08.16
  • Published : 2011.01.30

Abstract

In this paper, we prove a common fixed point theorem for a pair of weakly compatible maps under E.A. property.

Keywords

References

  1. M. Aamri and D. El Moutawakil, Some new common fixed point theorems under strict contractive conditions, J. Math. Anal. Appl. 27 (2002), 181-188.
  2. Z. Deng, Fuzzy pseudo-metric space, J. Math. Anal. Appl. 86 (1982), 74-95. https://doi.org/10.1016/0022-247X(82)90255-4
  3. J. X. Fang and Y. Gao, Common fixed point theorems under strict contractive conditions in Menger spaces, Nonlinear Analysis (TMA) 70(1) (2009), 184-193. https://doi.org/10.1016/j.na.2007.11.045
  4. M.A. Erceg, Metric space in fuzzy set theory, J. Math. Anal. Appl. 69 (1979), 205-230. https://doi.org/10.1016/0022-247X(79)90189-6
  5. A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets Systems 64 (1994), 395-399. https://doi.org/10.1016/0165-0114(94)90162-7
  6. M. Grabiec, Fixed points in fuzzy metric space, Fuzzy Sets Systes 2 (2007).
  7. G. Jungck, Commuting mappings and fixed points, Amer. Math. Monthly 83, 261-263. https://doi.org/10.2307/2318216
  8. G. Jungck, Compatible mappings and common fixed points, Internat J. Math. Math. Sci. 9 (1996), 771-779
  9. G. Jungck, Common fixed points for noncontinuous nonself mappings on nonmetric spaces, Far East J. Math. Sci. 4 (2) (1996), 199-212.
  10. M. Imdad and J. Ali, Jungck's common fixed point theorem and E.A. property, Acta Mathematica Sinica 24 (2008), 87-94. https://doi.org/10.1007/s10114-007-0990-0
  11. M. Imdad and J. Ali, Some common fixed point theorems in fuzzy metric spaces, Mathematical Communication 11 (2006), 153-163.
  12. O. Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy Sets Systems 12 (1984), 215-229. https://doi.org/10.1016/0165-0114(84)90069-1
  13. I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetika 15 (1975), 326-334.
  14. I. Kubiaczyk and S. Sharma, Some common fixed point theorems in menger space under strict contractive conditions, Southeast Asian Bulletin of Mathematics 32 (2008), 117-124.
  15. S. Kumar and D. Mihet, G-completeness and M-completeness in fuzzy metric spaces: A note on Common fixed point theorem, Acta Math. Hungar, (accepted).
  16. J. R. Lopez and S. Romaguera, The Hausdorff metric on compact sets, fuzzy sets and systems, Fuzzy Sets and Systems 147 (2) (2004), 273-283. https://doi.org/10.1016/j.fss.2003.09.007
  17. D. Mihet, A note on a fixed point theorem in Menger probabilistic quasi-metric spaces, Chaos,Solitons & Fractals 40 (5) (2009), 2349-2352. https://doi.org/10.1016/j.chaos.2007.10.029
  18. S.N. Mishra, N. Sharma and S.L. Singh, Common fixed points of maps on fuzzy metric spaces, Internat. J. Math. & Math. Sci. 17 (1994), 253-258. https://doi.org/10.1155/S0161171294000372
  19. R.P. Pant, Common fixed point for non commuting mappings, J. Math. Anal. Appl. 188 (1994), 436-440. https://doi.org/10.1006/jmaa.1994.1437
  20. V. Pant, Some fixed point theorems in fuzzy metric spaces, Tamkang Journal of Mathematics 40 (2009), 59-66.
  21. H.K. Pathak, Y.J. Cho and S.M. Kang, Remarks on R-weakly commuting mappings and common fixed point theorems, Bull. Korean Math. Soc. 34 (1997), 247-257.
  22. H. K. Pathak, R. Rodryguez-Lopez and R.K. Verma, A common fixed point theorem using implicit relation and property (E.A.) in metric spaces, Filomat 21 (2) (2007), 211-234. https://doi.org/10.2298/FIL0702211P
  23. B. Schweizer and A. Sklar, Probabilistic Metric Spaces, North Holland (1983).
  24. S. Sedghi, N. Shobe and M. Khademian, Generalizations of a contraction principle in M-fuzzy metric spaces, Advances in Fuzzy Mathematics 2 (2007).
  25. S. Sessa, On a weak commutativity of mappings in fixed point consideratons, Publ. Inst. Math. 32 (46) (1982), 149-153.
  26. P.V. Subramanyam, Common fixed point theorems in fuzzy metric spaces, Infor. Sci. 83 (4) 1995, 109-112.
  27. R. Vasuki, Common fixed points for R-weakly commuting maps in fuzzy metric spaces, Indian J. Pure Appl. Math. 30 (1999), 419-423.
  28. P. Vijayaraju and Z.M.I. Sajath, Some common fixed point theorems in fuzzy metric spaces, Int. Journal of Math. Analysis 3 (15) (2009), 701-710.
  29. L.A. Zadeh, Fuzzy sets, Inform. Control 18 (1965).