References
- M. Aamri and D. El Moutawakil, Some new common fixed point theorems under strict contractive conditions, J. Math. Anal. Appl. 27 (2002), 181-188.
- Z. Deng, Fuzzy pseudo-metric space, J. Math. Anal. Appl. 86 (1982), 74-95. https://doi.org/10.1016/0022-247X(82)90255-4
- J. X. Fang and Y. Gao, Common fixed point theorems under strict contractive conditions in Menger spaces, Nonlinear Analysis (TMA) 70(1) (2009), 184-193. https://doi.org/10.1016/j.na.2007.11.045
- M.A. Erceg, Metric space in fuzzy set theory, J. Math. Anal. Appl. 69 (1979), 205-230. https://doi.org/10.1016/0022-247X(79)90189-6
- A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets Systems 64 (1994), 395-399. https://doi.org/10.1016/0165-0114(94)90162-7
- M. Grabiec, Fixed points in fuzzy metric space, Fuzzy Sets Systes 2 (2007).
- G. Jungck, Commuting mappings and fixed points, Amer. Math. Monthly 83, 261-263. https://doi.org/10.2307/2318216
- G. Jungck, Compatible mappings and common fixed points, Internat J. Math. Math. Sci. 9 (1996), 771-779
- G. Jungck, Common fixed points for noncontinuous nonself mappings on nonmetric spaces, Far East J. Math. Sci. 4 (2) (1996), 199-212.
- M. Imdad and J. Ali, Jungck's common fixed point theorem and E.A. property, Acta Mathematica Sinica 24 (2008), 87-94. https://doi.org/10.1007/s10114-007-0990-0
- M. Imdad and J. Ali, Some common fixed point theorems in fuzzy metric spaces, Mathematical Communication 11 (2006), 153-163.
- O. Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy Sets Systems 12 (1984), 215-229. https://doi.org/10.1016/0165-0114(84)90069-1
- I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetika 15 (1975), 326-334.
- I. Kubiaczyk and S. Sharma, Some common fixed point theorems in menger space under strict contractive conditions, Southeast Asian Bulletin of Mathematics 32 (2008), 117-124.
- S. Kumar and D. Mihet, G-completeness and M-completeness in fuzzy metric spaces: A note on Common fixed point theorem, Acta Math. Hungar, (accepted).
- J. R. Lopez and S. Romaguera, The Hausdorff metric on compact sets, fuzzy sets and systems, Fuzzy Sets and Systems 147 (2) (2004), 273-283. https://doi.org/10.1016/j.fss.2003.09.007
- D. Mihet, A note on a fixed point theorem in Menger probabilistic quasi-metric spaces, Chaos,Solitons & Fractals 40 (5) (2009), 2349-2352. https://doi.org/10.1016/j.chaos.2007.10.029
- S.N. Mishra, N. Sharma and S.L. Singh, Common fixed points of maps on fuzzy metric spaces, Internat. J. Math. & Math. Sci. 17 (1994), 253-258. https://doi.org/10.1155/S0161171294000372
- R.P. Pant, Common fixed point for non commuting mappings, J. Math. Anal. Appl. 188 (1994), 436-440. https://doi.org/10.1006/jmaa.1994.1437
- V. Pant, Some fixed point theorems in fuzzy metric spaces, Tamkang Journal of Mathematics 40 (2009), 59-66.
- H.K. Pathak, Y.J. Cho and S.M. Kang, Remarks on R-weakly commuting mappings and common fixed point theorems, Bull. Korean Math. Soc. 34 (1997), 247-257.
- H. K. Pathak, R. Rodryguez-Lopez and R.K. Verma, A common fixed point theorem using implicit relation and property (E.A.) in metric spaces, Filomat 21 (2) (2007), 211-234. https://doi.org/10.2298/FIL0702211P
- B. Schweizer and A. Sklar, Probabilistic Metric Spaces, North Holland (1983).
- S. Sedghi, N. Shobe and M. Khademian, Generalizations of a contraction principle in M-fuzzy metric spaces, Advances in Fuzzy Mathematics 2 (2007).
- S. Sessa, On a weak commutativity of mappings in fixed point consideratons, Publ. Inst. Math. 32 (46) (1982), 149-153.
- P.V. Subramanyam, Common fixed point theorems in fuzzy metric spaces, Infor. Sci. 83 (4) 1995, 109-112.
- R. Vasuki, Common fixed points for R-weakly commuting maps in fuzzy metric spaces, Indian J. Pure Appl. Math. 30 (1999), 419-423.
- P. Vijayaraju and Z.M.I. Sajath, Some common fixed point theorems in fuzzy metric spaces, Int. Journal of Math. Analysis 3 (15) (2009), 701-710.
- L.A. Zadeh, Fuzzy sets, Inform. Control 18 (1965).