• Title/Summary/Keyword: 2-layer asphalt

Search Result 72, Processing Time 0.023 seconds

A Study on the Leakage Protection with Polypropylene Mat in Irrigation Canal (Polypropylene Mat에 의(依)한 용수로(用水路)의 누수방지(漏水防止)에 관(關)한 연구(硏究))

  • Kang, Sin-Up;Kang, Yea-Mook;Cho, Seung-Seup
    • Korean Journal of Agricultural Science
    • /
    • v.6 no.2
    • /
    • pp.166-184
    • /
    • 1979
  • In order to prevent the water loss in the irrigation canal constructed on the sandy gravel layer or on the other highly permeable ground layer, lining has been practiced. Many studies have been done so far on the lining method to prevent the water loss in the irrigation canal and recently studies on the lining with plastic film or polyethylene film were also reported. However, the plastic film or polyethylene film has low strength and is liable to break, and water loss from pin hole caused by contacting with sand or gravel is highly predicted. This study was then conducted to find proper lining and buring method in canal construction of polypropylene mat after coated with vinyl, as one way to overcome the shortcoming frequently observed when plastic or usual polyehtylene film were used. Eventhough rather longer periods of experiments are needed to attain reliable and accurate results on the variation of durability, the durability of asphalt coated area, or on the damage due to freeze after burial or exposure of polypropylene mat, the experiemental results obtained during one year of period are summarized as follows: 1. The curvature at the area between canal bottom and side slope had increased stability and saved consruction cost. The relationship among the variation of curvature, the reduction of polypropylene mat and the reduced amount of soil cutting at each side slope was presented in Fig. 7 through 9. 2. The depth of covering material to protect polypropylene mat was desired to be over 30cm, considering the water depth, side slope, canal cleaning practices, traffic, or back pressure of irrigation period. 3. In order to increase the canal stability and to prevent slope erosion, sandy soil was required, to be placed under ground, and coarse gravel should cover the surface area of canal. 4. The studies on the stability of side slope in the canal should consider the passive area on the bottom and the slope should be about 1 to 2, considering the slope stability, allowable velocity and tractive force. 5. When compared with earth lining, the lining with polypropylene mat coated with vinyl was responsible to save 28% and 37% of canal lining cost, when the soil carrying distances were 500 and 700m. respectively. 6. The water interception was almost completely attained when the polypropylene mat coated with vinyl was used for lining. But further studies were assumed to be necessary for the use of asphalt since the strength of polypropylene mat connected with asphalt will vary with duration.

  • PDF

Effect of Tire Contact Stresses on Tensile Strains in the Surface of Thin Asphalt Pavement (접지압력이 앎은 아스팔트포장 표층 인장 변형률에 미치는 영향 분석)

  • Park, Dae-Wook;Park, Joon-Kyu
    • International Journal of Highway Engineering
    • /
    • v.10 no.2
    • /
    • pp.47-55
    • /
    • 2008
  • In this paper, comparisons are presented on the predicted tensile strains which can affect the fatigue life of a thin asphalt concrete (AC) pavement near the surface of pavement from three-dimensional (3D) finite element (FE) using 3D measured tire contact stresses of a radial tire and a bias ply tire and a layered linear elastic program (BISAR). The objective was to analyze the stress distributions for a 11R22.5 radial tire and a $10{\times}20$ bias ply tire, and to compare the predicted tensile strains at the top and bottom of AC surface using different analysis methods. The results show that the stress distributions of two tires are similar but the 11R22.5 radial tire has much higher vertical contact stress than that of the $10{\times}20$ bias ply tire. The predicted tensile strains at the bottom of AC layer under the center of tire showed higher value by BM (BISAR with the measured contact area) method, which the measured tire contact area is used in a layered elastic program, while the tensile strain at the top of AC surface of 3.5cm offset distance from tire edge by 3D FE analysis showed the highest values among three analysis methods.

  • PDF

A Case Study for the Estimation of Remaining Lives of Asphalt Pavements (아스팔트포장 잔존수명 예측 사례 연구)

  • Lee, Jung-Hun;Lee, Hyun-Jong;Park, Hee-Mun;Kim, In-Tai
    • International Journal of Highway Engineering
    • /
    • v.10 no.2
    • /
    • pp.1-13
    • /
    • 2008
  • This study presents a case study of condition evaluation of various asphalt pavement sections to estimate performance lives. The pavement surface conditions including cracking and rutting are first evaluated using a automatic pavement analyzer, ARAN. HPCI(Highway Pavement Condition Index) values are estimated using the pavement surface distress data. It is observed from the pavement distress survey that the major distress type of the sections is top-down cracking. The modulus value of each pavement layer is back-calculated from the defection data obtained from a FWD(Falling Weight Deflectometer) and compared with the laboratory measured dynamic modulus values. Remaining lives of the various pavement sections are estimated based on a mechanistic-empirical approach and AAHTO 1993 design guide. The structural capacities of the all pavement sections based on the two approaches are strong enough to maintain the pavement sections for the rest of design life. Since the major distress type is top-down cracking, the remaining lives of the pavement sections are estimated based on HPCI and existing performance database of highway pavements. To evaluate the causes of premature pavement distress, various material properties, such as air void, asphalt binder content, aggregate gradation, dynamic modulus and fatigue resistance, are measured from the field cores. It is impossible to accurately estimate the binder contents of field samples using the ignition method. It is concluded from the laboratory tests that the premature top down cracking is mainly due to insufficient compaction and inadequate aggregate gradation.

  • PDF

Strength and Deformation Characteristics on Stabilized Pavement Geomaterials (II) : Numerical Analysis (안정처리된 도로하부 지반재료의 강도 및 변형특성 (II) : 수치해석)

  • Park, Seong-Wan;Ji, Jong-Keun
    • International Journal of Highway Engineering
    • /
    • v.11 no.2
    • /
    • pp.205-216
    • /
    • 2009
  • As a subsequent study, this paper presents a comparative evaluation of structural responses in asphalt pavements with stabilized foundations. The approach based on a finite element analysis which incorporates non-linear behaviors of pavement geomaterials is used to estimate each performance indicator under standard single axle loading condition. In addition, results from laboratory tests are used to provide physical and mechanical properties of stabilized geomaterials for analyzing various pavement structures. Changes in pavement responses with varying layer thickness and stabilizer contents were investigated. It is found that the effect of layer thickness and stabilizer content is a critical factor in structural response of stabilized pavements. Moreover, a design criterion is proposed for selecting minimum contents of stabilizer of coarse-grained geomaterials based on a result of unconfined compressive strength and proper layer thickness of foundations.

  • PDF

A Study on Freezing Characteristics of Pavements Using Data of Test Road (시험도로 자료를 이용한 포장의 동결특성 연구)

  • Jeong, Jin-Hoon;Bae, Sung-Ho;Kwon, Soon-Min
    • International Journal of Highway Engineering
    • /
    • v.7 no.2 s.24
    • /
    • pp.87-95
    • /
    • 2005
  • To prevent the lowering of structural capability due to freezing and thawing in cold winter, numerous researches on frost heaving have been performed. As the result, the freezing index contour map of the Korea peninsula has been made for the design of the anti-freezing layer of pavements. However, the validity of the anti-freezing layer needs to be evaluated because systematic investigations on the variation of freezing depth with the thickness and material types of pavement layers and the configuration of the ground have been rarely performed. The freezing index of the Korea Highway Corporation test road site was calculated and the freezing depths of the concrete and asphalt pavements of the test road were investigated using the ambient and pavement temperature and water content. In addition, the investigated freezing depths were compared to the values estimated by existing freezing depth models. This is the preliminary study on the freezing-related data measured at the test road. The results with higher reliability will be produced by the long-term accumulation of the data and the analysis on it.

  • PDF

Subsurface anomaly detection utilizing synthetic GPR images and deep learning model

  • Ahmad Abdelmawla;Shihan Ma;Jidong J. Yang;S. Sonny Kim
    • Geomechanics and Engineering
    • /
    • v.33 no.2
    • /
    • pp.203-209
    • /
    • 2023
  • One major advantage of ground penetrating radar (GPR) over other field test methods is its ability to obtain subsurface images of roads in an efficient and non-intrusive manner. Not only can the strata of pavement structure be retrieved from the GPR scan images, but also various irregularities, such as cracks and internal cavities. This article introduces a deep learning-based approach, focusing on detecting subsurface cracks by recognizing their distinctive hyperbolic signatures in the GPR scan images. Given the limited road sections that contain target features, two data augmentation methods, i.e., feature insertion and generation, are implemented, resulting in 9,174 GPR scan images. One of the most popular real-time object detection models, You Only Learn One Representation (YOLOR), is trained for detecting the target features for two types of subsurface cracks: bottom cracks and full cracks from the GPR scan images. The former represents partial cracks initiated from the bottom of the asphalt layer or base layers, while the latter includes extended cracks that penetrate these layers. Our experiments show the test average precisions of 0.769, 0.803 and 0.735 for all cracks, bottom cracks, and full cracks, respectively. This demonstrates the practicality of deep learning-based methods in detecting subsurface cracks from GPR scan images.

Analysis of Ground Subsidence according to Tunnel Passage in Geological Vulnerable Zone (지질취약구간 터널통과에 따른 지반침하량 분석)

  • Choi, Jung-Youl;Yang, Gyu-Nam;Kim, Tae-Jun;Chung, Jee Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.3
    • /
    • pp.393-399
    • /
    • 2020
  • In this study, the subsidence behavior caused by groundwater ex-flow in a limestone cavity encountered during tunnel excavation was quantified based on numerical analysis and the effect was analyzed. Based on the groundwater level and surface subsidence surveyed at the site, a numerical analysis technique was applied to analyze the characteristics of the subsidence behavior according to the tunnel passage of the geological vulnerabilities. The results of groundwater seepage-coupled analysis were analyzed to reflect the actual ground subsidence behavior. As a result of the study, it was analyzed that the ground subsidence due to the tunnel excavation in the limestone common section(the geological vulnerable zone) was analyzed that the dramatical decrease in groundwater level was the main cause. As a result of numerical analysis, it was analyzed that the long-term cumulative settlement of the asphalt surface after the groundwater ex-flow was 76~118mm due to the reduction of the volume of the soil layer due to the decrease in the groundwater level, and the settlement amount increased as the depth of the soil layer increased.

A Study on the Structural Design of Permeable Asphalt Pavement (투수성 아스팔트포장 구조설계방법에 관한 연구)

  • Lee, Soo-Hyung;Yoo, In-Kyoon;Kim, Je-Won
    • International Journal of Highway Engineering
    • /
    • v.13 no.3
    • /
    • pp.39-49
    • /
    • 2011
  • The porous pavement system is widely considered very effective in urban street because of its various benefits on safety and environment, but the pavement thickness design system has not been established yet. In porous pavement system. rainwater penetrates to the subgrade through porous pavements layers. Porous pavements are expected to reduce or alleviate the problems caused by impermeable pavement layer such as flood damage due to heavy rain in the city, drainage load, disorder in ecosystem, and heat island. However, its structural design methods in traffic roads has not been made mainly because of not being able to consider adequately the effect of rainwater on subgrade strength. In this study, structural design method of porous pavements is suggested after considering the subgrade weakness due to rainwater and numerical mechanical analysis. It is noted that elastic modulus of subgrade is reduced by 20% as subgrade moisture content is increased by 2% at optimum moisture content in the literature review. As a result of both finite element analysis and strength loss of subgrade by the existing design method, it is necessary to increase subbase thickness about 30cm in porous pavements compared with the existing traffic road pavement system. It is similar to premium thickness of structural design of porous pavements in Japan.

NDT Determination of Cement Mortar Compressive Strength Using SASW Technique

  • Cho, Young-Sang
    • KCI Concrete Journal
    • /
    • v.13 no.2
    • /
    • pp.10-18
    • /
    • 2001
  • The spectral analysis of surface waves (SASW) method, which is an in-situ seismic technique, has mainly been developed and used for many years to determine the stiffness profile of layered media (such as asphalt concrete and layered soils) in an infinite half-space. This paper presents a modified experimental technique for nondestructive evaluation of in-place cement mortar compressive strength in single-layer concrete slabs of rather a finite thickness through a correlation to surface wave velocity. This correlation can be used in the quality control of early age cement mortar structures and in evaluating the integrity of structural members where the infinite half space condition is not met. In the proposed SASW field test, the surface of the structural members is subjected to an impact, using a 12 mm steel ball, to generate surface wave energy at various frequencies. Two accelerometer receivers detect the energy transmitted through the medium. By digitizing the analog receiver outputs, and recording the signals for spectral analysis, surface wave velocities can be identified. Modifications to the SASW method includes the reduction of boundary reflections as adopted on the surface waves before the point where the reflected compression waves reach the receivers. In this study, the correlation between the surface wave velocity and the compressive strength of cement mortar is developed using one 36"x36"x4"(91.44$\times$91.44$\times$91.44 cm) cement mortar slab of 2,000 psi (140 kgf/$\textrm{cm}^2$) and two 36"x36"x4"(91.44$\times$91.44$\times$91.44 cm) cement mortar slabs of 3,000 psi (210 kgf/$\textrm{cm}^2$).

  • PDF

Inversion of spectral analysis of surface waves with analytic Jacobian (해석적 자코비안을 이용한 표면파 기법의 역산)

  • Ha, Hee-Sang
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.3
    • /
    • pp.233-245
    • /
    • 2002
  • The spectral-analysis-of-surface-waves (SASW) method is a nondestructive testing method based upon generation and detection of elastic stress waves. SASW is widely used as one of the techniques to determine stiffness profile in engineering geophysics. The essential steps involved are construction of an experimental dispersion curve from data collected in situ, and inversion of the dispersion curve to determine the stiffness profile. The main object of this study is to derive an analytical Jacobian for the inversion. If we set the subsurface to N homogeneous layer, it could save 2N times Jacobian calculation compared to numerical jacobian calculation during inversion. To reconstruct a stiffness profile, constrained damped least square method was applied for the inversion. The algorithm was tested for the numerical data and for the real asphalt and tunnel data, which were able to verify the stiffness profile. The stiffness profile reconstructed by the algorithm showed the possibility to appraise the soundness of tunnel with applications SASW.

  • PDF