• Title/Summary/Keyword: 2-inner product spaces

Search Result 26, Processing Time 0.018 seconds

ON 2-INNER PRODUCT SPACES AND REPRODUCING PROPERTY

  • Sababe, Saeed Hashemi
    • Korean Journal of Mathematics
    • /
    • v.28 no.4
    • /
    • pp.973-984
    • /
    • 2020
  • This paper is devoted to study the reproducing property on 2-inner product Hilbert spaces. We focus on a new structure to produce reproducing kernel Hilbert and Banach spaces. According to multi variable computing, this structures play the key role in probability, mathematical finance and machine learning.

ON GRAMS DETERMINANT IN 2-INNER PRODUCT SPACES

  • Cho, Y.J.;Matic, M.;Pecaric, J.
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.6
    • /
    • pp.1125-1156
    • /
    • 2001
  • An analogue of Grams inequality for 2-inner product spaces is given. Further, a number of inequalities involving Grams determinant are stated and proved in terms of 2-inner products.

  • PDF

FIXED POINT THEOREMS IN b-MENGER INNER PRODUCT SPACES

  • Rachid Oubrahim
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.2
    • /
    • pp.487-499
    • /
    • 2024
  • The main motivation for this paper is to investigate the fixed point property for nonlinear contraction defined on b-Menger inner product spaces. First, we introduce a b-Menger inner product spaces, then the topological structure is discussed and the probabilistic Pythagorean theorem is given and established. Also we prove the existence and uniqueness of fixed point in these spaces. This result generalizes and improves many previously known results.

On Bessel's and Grüss Inequalities for Orthonormal Families in 2-Inner Product Spaces and Applications

  • Dragomir, Sever Silverstru;Cho, Yeol-Je;Kim, Seong-Sik;Kim, Young-Ho
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.2
    • /
    • pp.207-222
    • /
    • 2008
  • A new counterpart of Bessel's inequality for orthonormal families in real or complex 2-inner product spaces is obtained. Applications for some Gr$\"{u}$ss inequality for determinantal integral inequalities are also provided.

CHARACTERIZATIONS OF AN INNER PRODUCT SPACE BY GRAPHS

  • Lin, C.S.
    • The Pure and Applied Mathematics
    • /
    • v.16 no.4
    • /
    • pp.359-367
    • /
    • 2009
  • The graph of the parallelogram law is well known, which gives rise to the characterization of an inner product space among normed linear spaces [6]. In this paper we will sketch graphs of its deformations according to our previous paper [7, Theorem 3.1 and 3.2]; each one of which characterizes an inner product space among normed linear spaces. Consequently, the graphs of some classical characterizations of an inner product space follow easily.

  • PDF

SOME NEW RESULTS RELATED TO BESSEL AND GRUSS INEQUALITIES IN 2-INNER PRODUCT SPACES AND APPLICATIONS

  • DRAGOMIR S.S.;CHO, Y.J.;KIM, S.S.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.3
    • /
    • pp.591-608
    • /
    • 2005
  • Some new reverses of Bessel's inequality for orthonormal families in real or complex 2-inner product spaces are pointed out. Applications for some Gruss type inequalities and for determinantal integral inequalities are given as well.

ZEEMAN'S THEOREM IN NONDECOMPOSABLE SPACES

  • Duma, Adrian
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.265-277
    • /
    • 1997
  • Let E be a real, non-degenerate, indefinite inner product space with dim $E \geq 3$. It is shown that any bijection of E which preserves the light cones is an affine map.

  • PDF