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ON GRAM’S DETERMINANT
IN »n-INNER PRODUCT SPACES

Y. J. Cuo, M. MaTi¢ AND J. PECARIC

ABSTRACT. An analogue of the Gram’s inequality for n-inner prod-
uct spaces is given. Further, a number of inequalities involving
Gram’s determinant are stated and proved in terms of n-inner prod-
ucts.

1. Introduction

A concepts of n-inner products and n-inner product spaces, especially
in the case n = 2, have been intensively studied by many authors in
the last three decades. A systematic presentation of the recent results
related to the theory of n-inner product spaces as well as an extensive
list of the related references can be found in the book [1]. Here we give
the basic definitions and the elementary properties of n-inner products.

Let X be a linear space of dimension greater than 1 over the field K =
R of real numbers or the field K = C of complex numbers. Suppose that
(-], ++ ;) isa K-valued function defined on X"*? = X x X x --- x X,

n+1 times

n > 2, satisfying the following conditions

(nly) (z,z|z2, - ,2n) > 0 and (z,z|22, -+ ,2,) = 0 if and only if the
vectors x, 22, - - , 2, are linearly dependent,

(nl2) (z,z|22, + ,20) = (22,22|T, "+, Zn),

(nl3) (z,ylzigs -+ »2i,) = (T,y|2z2, -+ ,2,) for any permutation (ig,

77'71) of (27 7n)a
(nI‘l) (y)$‘227' s 7Zn) = (ZL‘,yI22, T ’Zn))
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(nls) (az,ylze, - ,2n) = a(z,y|z2, -+ ,2n), for any scalar a € K,
(nlg) (x4 2 ylz2, - ,2n) = (z,yl22,  ,2n) + (&, yl22, -, 20) -
Here (z,y|22,- -, 2,) denotes the value which the function (-, |-, ,")
assigns to the (n + 1)-tuple (z,y,29, - ,2,) of vectors from X. Also,
(®,yl|22,- -+, 2n) denotes the complex conjugate of the scalar (z,y|z2,
"y Zn).
A function (-, |, - - , ) is called an n-inner producton X and (X, (-, |-,
-,+)) is called an n-inner product space (or an n-pre-Hilbert space).
Some basic properties of the n-inner product (-,-|,--- ,-) can be imme-
diately obtained as follows:
(1) If K = R, then (nl4) reduces to

(yaz'ZQ) T ,Zn) = (.Z', y,Z27 e 7zn) .
(2) From (nl) and (nl3), it follows that
(IE,:BIZQ, c 7z‘n) = (ziyzi|22; 321, 241, 7211,)

holds for any i € {2,--- ,n}.
(3) From (nly) and (nls), we get

(0,yl2z, -+ ,2n) =0, (2,022, ,20) =0
and also
(1.1) (x,0yl2z2,  ,2n) =Q(z,y|l22,  , 2n) -
(4) Using (nlz)—(nls), we get

(Zz,ZglIiy,"' 7211)
= (xiy7$:tylz29’“ azn)
(II?,£E|Z2,"' ,Zn) + (yay|z2a"' 7zn) izRe(I’ylz%”' 7Zn)

and
Re (a:,y|;:2,--- 7zn)
(1.2) 1
= Z[(z%z?(x'*_yv'” ,Zn)—(ZQ,ZgliL‘—-y,--- ,Zn)].

In the real case K = R, (1.2) reduces to

(x7y,22a"' ,Zn)
(1.3) 1
=1 [(z2, 22|+ y, -+, 2n) — (22, 22| — Y, -+ , 2n)]
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and, using this formula, it is easy to see that, for any a € R, we have
(1.4) (z,ylaze, - ,2zn) = & (z,ylz2, -+, 2n) -

In the complex case K = C, using (1.1) and (1.2), we get

Im (CIJ, ylz27 T 7Zn)

= Re[—i(z,ylz2, -, 2n)]

1 . .
= Z [(z2,z2|m + Y, »Zn) - (z2a z2|$ — Y, 7Z'n,)] 3

which in combination with (1.2) yields

(:U,y]zZ,"' 7zn)
1
=7 [(z2, 22 + v, -, 2n) — (22, 22|12 — 4, -+, 20)]
+ 1 [(22, 22]x + 1y, -+, 2n) — (22, 22|® — 3y, - -+ , 2n)] -

Using the above formula and (1.1), we get, for any a € C,

(1‘5) (:B,yIOzZQ,"' 7zn) = |a|2 (:L',y|z2,~-- ,Zn)-

However, for a € R, (1.5) reduces to (1.4). Also, from (1.5) and (nl3),
we get
(m,yl2e, -+ 2im1, 024, 2i1, 00 » Zn)
2
= |a| (x7y|z2) Crt 3 Zi—19 %5 B4l ,Zn)
and
(Is 'y|227 T Z‘i—1707 Zig1,m 0, Zn) =0
for any ¢ € {2,--- ,n}.
(5) Suppose that x,y, 22, - - , 2, € X are given vectors. If z, 25, -+,
zn, are linearly independent, then we can define the vector

_ (y,$|22,~~' azn)
(iB,fL'lZg,"* 3z'n.)

U =

We have (u,ulzg,---,2,) = 0, which, by the properties (nly)-(nls),
reduces to the inequality

|(CE,in2, U 7ZTL)‘2
(z,zl22,"+ , 2n)

(y,y|22,"' azn)" Zoa
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or, equivalently,

(16) |(5U,y|z2,"' azn)|2 S (IE,JI'ZQ,"' 7Zn) (y,ylzg,--- 7Zn)-

Moreover, the equality in (1.6) holds if and only if u,z3,---,2, are
linearly dependent, that is,

’z' z s « .. ,Z
y=(y |22 n):c+a, a€ Lz, ,2,).
(a:a :C|Z27 U az'n.)
Similarly, if y, 22, - - , 2z, are linearly independent, then we consider the
vector
Z , v 7Z
v=1 — (LL’, y' 2 n)
(y’ y|22’ U ,Zn)

and the inequality (v,v|za, - ,2,) > 0, which is also equivalent to the

inequality (1.6). In this case, the equality holds in (1.6) if and only if

x, Z .. ,Z
x:( yl 2, n)y+a’ QEL(Z27"'7Z’I7,)'
(Y, ylza, "+, 2n)
Finally, if z, 22, - , 2, are linearly dependent and vy, zo,- - - , z,, are lin-

early dependent too, then we have
(x,z|22, -+ ,2n) =0 and (y,yl|z2, ,2n) =0.
Therefore, we get

0<(z+y,z+ylz2, - ,20) =2Re(z,y|z2, - ,2n),
OS (-T'—y,.’lf—ylZQ,"' ,Zn)=~2Re(fL',y|ZQ,"' 7Z'n,)a

which implies that

(1.7) Re (z,ylze, -+ ,2,) = 0.

In the real case K = R, (1.7) reduces to (z,y|z2,- - ,2,) = 0, which
means that both sides of (1.6) are equal to zero. In the complex case

K = C, we have additionally

0 <(z+iy,z+iy|ze, - ,2n) =2Im(z,yl22, - ,2n),
OS (ZE-’Ly,SC-’Ly'ZQ, 7zn) = —21m(:v,y|22, 7zn)a
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which implies that
Im (z,y|z2, -+ ,2,) = 0.

This in combination with (1.7) yields (z,y|22, -+ ,2,) = 0 and (1.6) is
again true since the sides of (1.6) are equal to zero. We conclude that

the inequality (1.6) is valid for any choice of vectors z,y, 20, -+ , 2z, € X.
Moreover, for any vector a € L (2, ,2,), we have (a,a|z, - ,2,) =
0 since a, 22, - - , 2z, are linearly dependent and so, from (1.6), it follows
that

(CI?,CE‘ZQ,"' ,Zn)=0, (a,y|22,--~ )zn):o
for any vectors z,y € X and a € L(2q, -+ ,2,). Also, if 29, , 2, are

linearly dependent, then, from (1.6), we get
(@, ylz2,- -+ ,20) =0

for any vectors z,y € X. Using these facts and the above discussion on
the equality cases, we easily see that the equality in (1.6) holds if and
only if the vectors z,y, 22, - - , 2, are linearly dependent.

(6) In any given n-inner product space (X, (-, |-, ,-)), we can define
a function ||-,--+ ,’[|on X" =X x--- x X as

n times

(1.8) [ e N D

for any z1,x2, -+ ,xn € X. It is easy to see that this function satisfies

the following conditions:

(nN1) ||z1,22, - ,Zs|| = 0 and ||z1, 22, -+ , %] = 0 if and only if the
vectors x1, 2, - , I, are linearly dependent,

(nN2) ||Ziys Tag, -+, s || = |lz1, 22, ,Zn]| for any permutation (iy,
i2, -+ ,in) of (1,2,--- ,n),

(nN3) llazi,z2, -, zn|| = |a| |21, 22, -+ , Z,]| for any scalar a € K,

(TLN4) Hxll + m/1/7m2’ T ,33.,1“ < ”:L"l,.’ltg, T 73:”“ + ”xlll’w% e ,Cl?n” .

A function |-,---, || defined on X™ and satisfying the conditions
(nN1)~(nNy) is called an n-norm on X and (X, ||-,---,-||) is called an
n-normed space. Whenever an n-inner product space (X, (-,-|-,---,"))
is given, we consider it as an n-normed space (X, ||-,---,-||) with the
n-norm defined by (1.8).

A natural extension of the Cauchy-Schwarz-Bunjakowsky inequality

(1.9) (2 9)I* < (z,2) (3,9)
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in an inner product space (X, (-,-)) is the Gram’s inequality

(1.10) I'(z1,22, - ,2k) 20,
which holds for any choice of vectors z1,z2,--- ,zx € X and is strict
unless z1,x3, -+, are linearly dependent. Also, there are a number

of inequalities of various types related to the Gram’s determinant

(371,331) (1171,.’132) (ml,xk)
T (21,2, ,23) = (‘”2’.5”1) (w2,22) -+ (332{1719)
(a:k’ml) (fL‘k,il?Q) (itk,il?k)

(see, for instance, [2, pp. 381-385] or [3, Ch. XX]). The inequality (1.6)
is an analogue of the Cauchy—Schwarz-Bunjakowsky inequality (1.9) for
n-inner product spaces.

The aim of this paper is to give an analogue of the Gram’s inequality
(1.10) for n-inner product spaces as well as the analogues for n-inner
product spaces of some classical inequalities involving Gram’s determi-
nant.

In Section 2, we give a definition of Gram’s determinant in n-inner
product spaces and then prove a version of Gram’s inequality (1.10) for
n-inner product spaces. Also we give a versions of Parseval’s identity
and of Bessel’s inequality in n-inner product spaces.

In Section 3, we prove some further inequalities involving n-inner
product analogue of Gram’s determinant.

In Section 4, we give a version for n-inner product spaces of the well
known inequality which can be regarded as a generalization via Gram’s
determinant of the Cauchy-Schwarz inequality for sequences (see, for
instance, [3, p. 599]).

In Section 5, we give a n-inner product analogue of one well known
result which can be regarded as a generalization via Gram’s determinant
of Bessel’s inequality (see [3, pp. 396-397]). Also, we give two interesting
consequences of this result (Corollary 6 and Theorem 8) which are in
turn n-inner product analogues of the known classical results (see |3, pp.
603-604]).

2. Gram’s inequality

Let (X,(-,],---,-)) be an n-inner product space over the field of
real numbers K = R or the field of complex numbers K = C. For any
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given vectors =1, ,%x € X and 22, - ,%, € X, define the matrix
G(Ila"' ,.’DklZQ,“' ,Zn) by

G(.’L‘l,"' ,$k|22,"' ,Zn)
($1,m1|z2,“' azn) (x1,$2|22,"‘ 7Zn) (xlaxk‘z2,”' ,Zn)
(11:2,1']_'22,"‘ ,zn) (.’1:2,1:2|22,~~ ,Zn) ($2,$k|22,"‘ 7217,)
(CEk,.’L’l‘Zz,"‘ ,zn) (xk,$2122,"‘ »Zn) (.’Dk,wk122,“' 7zn)
and Gram's determinant T (z1,- -+ , Zk|22, - - , 25) Of the vectors =1, -,
x), with respect to the vectors 23, -+ ,2, as

(2.1) T (z, - ,Zkl|22, " y2n) = det G (z1, - , k|22, y 2n)

THEOREM 1. Let zy,--- ,2x € X and 23, -+ ,2, € X be given vec-
tors in an n-inner product space X. Then we have

(22) 11(3317”' ,$k|22,"' ,Zn)20~

Further, the equality holds in (2.2) if and only if the vectors zy,- - - , Tk,
2o, , 2y are linearly dependent.

Proof. First, we consider the case of equality in (2.2). Suppose that
the vectors z1,--- ,Zk, 22, , 2, are linearly dependent. Then we have

(2.3) 041.’1)1+"'+akmk+ﬂ232+"‘+ﬁnzn=0

for some scalars oy, ,0p, 02, ,Bn € K and at least one of them is
different from zero. From (2.3), we get

(121 + -+ + agzr + Bo2za + -+ + Bnzn, Tj|22, -+, 2n)
‘__07 .7217 7k7

that is, since (B222 + -+ + Brzn, T2, ,2n) = 0,

(2.4) o (xl.’lezZ,"' y2Zn) + o+ ok (Rxj|22, - 2n)
=0, ]—-“‘—1,,]{?
If ay = -+ = ap = 0, then (2.3) reduces to

Beza+ -+ Brzn =0
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with 8; # 0 for at least one 7 € {2,--- ,n}. This means that 2z, - , 2z,
are linearly dependent and obviously I' (21, %2, -, Zk|22," - ,2n) = 0
since, in this case, all the elements of determinant are equal to zero. Fur-
ther, if a; # 0 for at least one ¢ € {1,--- , k}, then the system (2.4) has
nontrivial solution (ay, - - , @) which means that the matrix of the sys-
tem, which is equal to the transpose of the matrix G(z1, - ,zk|z2, -,
zn), must be singular and hence I' (21, ,zk|22, -+ ,2n) = 0. There-
fore, if the vectors zi1,--- ,xk, 22, - , 2, are linearly dependent, then
D(z1, -+ ,xk|22, -+ , 2n) = 0. Conversely, suppose that I'(z, - - - , zx|22,
-++,2zp) = 0. Then the system (2.4) has nontrivial solution (a1, - , k).
But (2.4) can be rewritten as

(2.5) (1) + -+ + gTg, |20, -, 20) =0, j=1,--- k.

Multiplying the j* equation in (2.5) by @; and then summing over
j=1,---,k, we get

(a1z1 + -+ + 0Tk, 1Ty + - - + OTg|22, -, 2n) = 0.
This means that the vectors ayx; + -+ + agxi, 22, - , 2n, are linearly
dependent and so there exist the scalars a,v2, -+ ,v, € K such that

a # 0 or ~; # 0 for at least one ¢ € {2,--- ,n} and
a(ozy + -+ opte) + Y222+ + Ynzn = 0.

Since a; # 0 for at least one j € {1,--- , k}, we conclude that the vectors
T1,Lo, -, Tk, 22, - , 2y are linearly dependent.

Suppose that the vectors z1,--- ,Zk, 22, - , 2, are linearly indepen-
dent. Then, for r € {1,---,k}, the vectors =1, - , 2,22, - , 2, are
linearly independent and

P(xla"'7x7‘|22a"'azn)7é07 7‘=1,"',k.

Define the vectors y1,- -, yx by

Y1 =71
and
(2.6)
T
_ G (x1, -, Tr-1]22,- -+, 2n) :
Yr = Tr—1

(Tr,T1)20, 1 2n) 0 (e Tro1l22, 0 5 20) ‘ ,
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for r = 2,---,k. Expanding the determinant in (2.6) over the last
column, we get

2.7 yr=01m+- -+ A1+ D (@1, T2, 20) 2

and
(2.8)
(yrvmsiz%"' 7Zﬂ)
= A1(z1,zslz2, - ,2n) + -+ A1 (@r—1,Bs]22, - -+, 2n)
+T(z1, -+ zr—1l22, -, 20 H@r, Ts|22, -+, 2n)
(-’Elvms|22:"' ,Zn)
— G(l'l,"',mr_1|22,"',2n) .
- (:1:7‘—1va|22)"' ;Zn)
(zr x1l22,- - 2n) - (@r,2r_1]22, -, 2n) (zr,zsl|22,- -, 2n)

forr=2,---,kand 1 < s <r. If 1 <s < r, then the determinant in
(2.8) has two equal columns and hence

(Yr, Tslz2, - ,20) =0, 1<s<T.
For s = r, it follows from (2.8) that
(Y Zr|22, - s 20) =0 (@1, Tol22,+ , 2n)-
Now, using the expansion (2.7) and the above equalities, we get

(yrayrlz2; T ,Zn)

= F(mla'” 7:177“—1'227"' 7zn) (yr,yle%"' 7ZTL)
= F(Q:l,"‘ )'T"r'—l|22>"' ,Zn)F(ZCl,"' ax’r‘lz2a"' ,Zn)
£0

and hence
(yr,yr|zz,---,zn)>0, r=2---,k.

In fact, we have

F(:El’...’xrzz,.,',zn)___ (yrayrlz2,-..,2n)
2 F(‘/L'l)..')x’f‘—llzz;"',zn)
(2.9)
(y’l‘ayr|22a"' ,Zn)

[(z1, @122, 20)
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for r=2,---,k. Now, it follows that
F(11|Z2,"' 7Zn) - (m1,$1|22,"' 7zn) >0

by the assumed independence of z1, 23, - - - , 2,,. Using this and (2.9) with
r = 2, we get further
(Y2, y2l22, -+, 2n) (Y2, y2l22,- -+ 1 2n)

T'(xy,20|20,-- ,2,) = = > 0.
(21,3222 ) T (z1]|22, -, 2n) I (z1]|22,- -, 2n)

Continuing in this way, we conclude that
T(zy, -, T2, - ,20) >0, re&{l,---,k}.
This completes the proof. a
REMARK 1. The inequality (2.2) is an analogue of the Gram’s in-

equality for n-inner product spaces. In the case when k& = 2, (2.2)
reduces to

(331,.’L‘1|22,' o ’Z’n) ($2,CC2|22,- e ,Zn) - |($1,£L’2|22,‘ ©t 7zn)l2 >0

with equality if and only if the vectors xy,zg, 22, - , 2, are linearly
dependent. This is just the inequality (1.6) and so Gram’s inequality
can be regarded as a generalization of the Cauchy-Schwarz-Bunjakowsky
inequality.

Note that, in the case when the vectors z1,z2, -+ , Tk, 22, - , 2, are
linearly independent, we can define the vectors y1,y2,--- ,yx as in the
proof above and, from (2.7), it follows that

L(y1,y2, »yr) = L(z1,22," - ,2), T=1,--,k.
Moreover, from the proof above, we see that
(Yr,Yslz2, + ,2a) =0, 1<s<r<k.
Also, it follows that

lys, 22, 2nll® = (w1, 91122, -+, 20) = T (@1]22, -, 20)
and
lyrs 22, s 2mll® = (rywilz, -, 2m)
=T (21, s Zprlzzy - > 20) T (21, |20, -, 2n)
forr=2,--- k.

Now, the following result is evident:
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COROLLARY 1. Let z1,%2, -+ ,Zk, 22, - ,2n, € X be given linearly
independent vectors in n-inner product space X. Let the vectors y1,y2,
-+ ,yx be defined as in the proof of Theorem 1. Define the vectors
€1,€2, ", €k by

Y1 I

31 = =
lly1lz2, - -, znl| I (z1]|zo,--- ,zn)l/2
and
Yr

e = T ———

lyrlza, -+, 2nll
_ Yr

[F (1'1,"' 7:ET—1|Z27"' azn)r(xla"' 7xT|Z2a"' )Zn)]1/2

for r =2,---,k. Then we have the following:
(1) Forr,s € {1,2,--- ,k},

0 forr#s,

ery€s|22, 0, 2p) = 0rs =
( 122 ) ° {1 for r = s.

(2) Forre{l,2,---,k},

L(ei,e2, -+ ,er) = L(z1,22, , %)

REMARK 2. Note that the requirement that the vectors x1,zs, -,
Tk,22," " ,2n are linearly independent is equivalent to the requirement
that these vectors satisfy the following three conditions:

(i) z1,22, -,k are linearly independent,

(ii) 2g,--- , 2, are linearly independent,

(il) L (21,22, - ,26) N L (22, - ,2zn) = {0}.

Now, suppose that x1,Z2, - is an infinite sequence of linearly inde-

pendent vectors from the space X and there exist linearly independent
vectors za, -+ , 2, € X such that

L(zy,z9, -+ )N L (22, - ,2,) = {0}.

Then we can construct an infinite sequence of vectors ey, ez, - such
that the conclusions of Corollary 1 are valid for all r,s € N.
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Suppose now that Y is a finite-dimensional linear subspace of a n-
inner product space (X, (-,<|-,---,-)) and 22, - ,2, € X are linearly
independent vectors such that

YNL(z, - ,2z,) ={0}.

If dimY = k, then, by the Corollary 1, we can construct the base
{e1,-+ ,ex} for Y such that

(210) (61;,6_7"22, v ,Zn) = 6ija i,j c {1,- .- ,k}

Any vector z € Y has unique representation of the form z = Zle ;€.
Using (2.10), we get (z,ej|22, -+ ,2n) = ; forall j =1,--- ,k and so

k.
= Z(w761122a"' 7zn)ei

i=1

for all z € Y. Therefore, if z,y € Y are two given vectors from the
subspace Y, then, using (2.10), we get

(z,ylz2,- -+, 2n)
k k
= (Z(m,eilz'g,n' s Zn) €4y (y,ejlza, -+, zn) €522, - ,zn)
i=1 Jj=1
(2.11) k
= ZZ(xaeilz%'” ) Zn.) (y7ejlz2a"' s 2n)0ij
i=1 j=1
k
= Z(CL’,@ilZz,"* ’Zn) (eiyylz2)"' 7zn))

1

2

which is an analogue of Parseval’s identity for n-inner product spaces.
Especially, for any z € Y, (2.11) with y = 2 becomes
k
”IE, 22y ’z’n”2 = (CC,CL’|ZQ, e 7zn) = Z |(CL‘, €i|22, e 7zn)|2 .

i=1

Further, for any x € X, define the vectors € Y and v € X by

k
u:Z(:c,ei|zg,--- yZn) €5y, V=T — U
i=1
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For j=1,--. ,k, we have

k
(‘T - Z (xaei|22a' o 7zn) 6i,€j|22,' o 7Zn>

=1

(v,e5|22,- -, 2p)

k
= (-’17,6]'!22,"' 7Z'n) e Z(w;eilz%'” ,Zn) 57,]
—1

K2

= O,
which implies that (v,yl|zg,---,2,) =0 for every y € Y.

THEOREM 2. LetY be a finite-dimensional linear subspace of n-inner

product space X and za,--- ,z, € X be linearly independent vectors
such that
(2.12) YNL(zg, - ,2zy) = {0}.

Then every x € X can be uniquely represented as
r=u+wv,
where u € Y and v € X with
(v, ylzz, -+ ,22) =0, yevY.
Proof. The existence of the proposed representation for z € X is
already proved. It remains to prove the uniqueness. Now, suppose that
z=u+v=u +7,

where u, v’ € Y and (v,y|z2, - ,2,) = (V/,y|22, -+ ,2,) = 0 for all
y € Y. Then we have
v—v =u -ueyY

and
! !
(v —u,u’ —ul|ze, -, 2,)
! /
= (v—v,u —ulz, -, 2,)
! ! /
- (’U,U *UIZQ,"' ,Zn) — (U , U —U|22,"' )Z’n)
=0.
This implies that 4’ —u, 29, - , 2z, are linearly dependent, which means
that «' — u € L (22, - ,2,) since 22, -+, 2y, are linearly independent.

Because of (2.12), it is possible only when v’ — u = 0. Thus we must
have v — v =« —u = 0, that is v = ¢/ and u = «’. This completes the
proof. O
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COROLLARY 2. Let Y be a finite-dimensional linear subspace of n-
inner product space X and zs,- -+ ,2, € X be linearly independent vec-
tors such that (2.12) holds. If {e1,--- ,ey} is the base for Y such that
(2.10) holds, then, for any = € X

k
(2.13) Y @ eilza, -z < ez, 2l

i=1

The equality in (2.13) holds if and only if x = u+v for some u € Y and
somev € L(za, -+ ,2n).

Proof. By Theorem 2, any € X can be represented as x = u + v,

where v € Y and (v,y|22, -+ ,2,) =0 for all y € Y. Moreover, we have
k
rT=u+7v, U=Z(IE,€¢'Z2,"‘ >zn)ei’ (U,UI22,--- :zn) =0,
i=1

which yields that

Iz, 22, 2l = (+v,u+v]zg, -, 2n)
= (u,u|zo, - ,2n) + (u,v|22, - , 2n)
+ (v, ulza, -+, 2n) + (v, 0|22, -+, 2n)
= flu, 22, s 20l + [V, 22, 2|
> flu, 22, s zal®

k
Z I(m,ei|22, e 7zn)‘2 .
i=1

Therefore, (2.13) is valid. Further, it is evident that we have the equality
if and only if ||v, 29, - - - ,an2 = 0, which is equivalent to the requirement
that v, 2o, - - , 2, are linearly dependent, that is, v € L (2, , 2,) since
Z2, -, zn are assumed to be linearly independent. This completes the
proof. O

REMARK 3. The inequality (2.13) is an analogue of Bessel’s inequal-
ity for n-inner product spaces. It is easy to see that it is also valid for an

infinite sequence of vectors. Namely, if ey, ez, - is an infinite sequence
of vectors from X and z3,---,2, € X are linearly independent vectors
such that

L(ey, ez, --)NL(z2, -+ ,2n) = {0}
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and
(ei7ej|z2)"'7zn)=6ija iaj:1727"')
then we can apply Corollary 2 to the subspace Y = L(e, - ,ex) to

obtain the inequality (2.13) for any fixed £ € N. When £ — oo, we get
that, for any = € X,

(o8}

2
Zl(x,eile,--- 7271)'2 < H.’D,Z2,'-- ,Zn“ .

i=1

3. Some inequalities involving Gram’s determinant

Throughout this section, we assume the notation from the previous
two sections. We prove some inequalities involving the Gram’s deter-
minant in n-inner product space defined by (2.1). First, we need one
technical result.

LEMMA 1. LetY be any linear subspace of an n-inner product space
X and 2z, -+ , 2, € X be linearly independent vectors from X. Suppose
that x € X can be represented as

r=u-+uv,

where uw € Y and (v,y|22,- -+ ,2,) = 0 for all y € Y. Then, for arbitrarily

chosen vectors z1,- - , Ty, € Y, we have the following:
F((L‘,l‘l,"' ,xm'zz7... 7zn)

(3.1) =T (w21, ,Tml|22, "+, 20)
+ ”va227"' ,Zn“2F(.'L'1,"' ,CEmI22,"' azn)-

Especially, ifu € L (z1,--- ,Zm,), then

F(ZL‘,.’El,"' ,CEm|22,"' ;zn)
(3.2) )
= HU7z2a"' 7zn“ 11(-’”1:"' axm|z2a"' azn)-
Proof. Under given assumptions, we have, for all j =1,--- ,m,

(IL'j,.’EIZz,'*' s )

Zn) = (l'j,u—*'UlZz,"' ’zn) = (.’L’j,u‘Z‘z,"' azn)a
(iL',iL'j|22,"' 7zn) = (U+U7lez2a"' 7zn) = (U,iL'lez,"' 7zn)'



754 Y. J. Cho, M. Mati¢ and J. Pecari¢

Also, it follows that

(17,.’17'22,“',27,)= (u—}-v,u—!—v[zz,---,zn)
= (U,U‘zz, e 7zn) + (’U,’UIZQ,' e azn)
= (U,U|Z2,-‘- ’zn)+nvaz2)"' ,znl|2-

Using this and the elementary properties of determinant, we get

F(IE,.’I?l,"' ,wmlz2,"' azn)
(U,UlZz,"' ,Zn)2
+||U,z2’...7zn“ (u,m1|Z2’...’zn) PP (u,xm|22,... ’zn)
= | (z1,ulze,- -+, zn)  (21,%1]20,- - ) o (@1, Tml22, 0 5 20)
(xm’u'22,... ,zn) (-/L'm7$11227"' ’zn) (mm,mmIZ2,... ,Zn)
(w,ulzg, -+ y2n) (W, T1]22, 7 y20) o0 (W, Bmlo2, 0 20)
(z1,ulze, -+ ,20) (@1, T1]22,0 y20) - (@1, Tmle2, 0 5 20)
(xm,UlZQ," . ,Zn) (xmamllz27"' )Zn) (:I"m7xm’227"' ,Zn)
”’U,Z2,"' 7zn“2 (U,,(L'1|2,’2,"' azn) (U,$m|22,"‘ 7zn)
n O (-'L'l,w1|22,"‘ 7zn) ($1,$m|22,"' ,Zn)
0 (.’L'm,$1|22,"' ,Z'n) (mmaxm|227" * azn)
= F(u’xla"' ,$m‘22,"' 7zn)
+ “’U,Z2," . ,Zn“zF(CCl,"' ,.’Em|22,"' azn)7

which is just the identity (3.1). The identity (3.2) follows directly

from (3.1) sinceu € L(zq,- - ,Zp,) implies that u,z1, -+ ,Zm, 22, , 2n
are linearly dependent and hence I (u, 1, ,Zm|22, -+, 2zn) = 0. This
completes the proof. O

Now, we can prove some inequalities involving the Gram’s determi-
nant.

THEOREM 3. Let z1,--- ,z, € X be given vectors in an n-inner
product space X and z3,--- ,z, € X be linearly independent vectors
from X such that

(33) L(.’E]_,"' 7xM)mL(z2a"" 7zn):{0}‘
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Then we have the following:

F(xla"' 7xm!z2a"' 7Zn)
(3.4)

S “371,252,"' ,z'nH2"'“$m;Z27"' azn“z'

For m > 2, the equality in (3.4) holds if and only one of the following
two conditions is satisfied:

(i) there exists at least one j € {1,--- ,m} such that z; = 0,
(ii) the vectors x1,- - ,Zm, are linearly independent and
(.’Iti,J,'jIZQ,"' ,Zn) = 0, 1<i< _] <m.
Proof. For m = 1, we have I' (21|29, -+ ,2n) = ||z1,22, - ,zn[]2 and

(3.4) is trivially satisfied. So, take m > 2 and, first, suppose that
X1, ,&Tm are linearly dependent. Then the left-hand side in (3.4)
is equal to zero, while the right-hand side is nonnegative and so (3.4)
is valid. Further, the equality occurs in (3.4) in this case if and only
if ||z, z2,- - , Zn||> = 0 for at least one j € {1,---,m}. On the other
hand, ||z;, 22, - ,zn||2 = 0 holds if and only if x;, 22, -+ , 2, are lin-
early dependent that is if and only if z; € L (22, -+ ,2p) since 22, , 2
are assumed to be linearly independent. By (3.3), z; € L(22, ++ ,2n)
is equivalent with z; = 0. Next, suppose that x1, -,z are linearly
independent. Then x1,: - ,Zm, 22, - , 2, are also linearly independent
since 29, - , 2, are assumed to be linearly independent and (3.3) holds.
Hence I' (21, - ,Zm|22, -+ ,2,) > 0. Define Y = L(z2, -+ ,zm). By
Theorem 2, the vector x; can be represented as

T1=u+v, uecy, (U,y‘227"”zn)=07 yey.
Applying Lemma 1, we get

T (@1, Bmlz2, + 2n)
(3.5) :
= lloy 2y s zmlP T (@2, @l 1 20)

On the other hand, (v, u|22, -+, z,) = 0 implies

”.'171,22," . 7Zn“2 = ”U,ZQ, to azn||2 + ||’U, 22yt azn”2
(3.6) ,
> ”’U,Zz,"' 7zn” .



756 Y. J. Cho, M. Matié and J. Pecarié¢
Since I' (z2, -+ , Tml22, -, 2n) > 0, from (3.5) and (3.6), it follows that

6 T (z1,  Tm|22, * , 2n)
' < |z, 22, > 202 T @2y -+ )22, -+ 5 20) -

Moreover, the equality in (3.7) holds if and only if ||u, zg, - ,zn||2 =

0, which is possible if and only if u, 25, , 2, are linearly dependent
that is if and only if u = 0 since 2,--- , 2, are assumed to be linearly
independent and (3.3) implies Y N L (2zg,--- ,2,) = {0}. Now, u =0 is
equivalent with z; = v, that is, (z1,ylz2, - ,2,) =0 forally € Y or,
equivalently,

(1:1,1»'1;122,"',211,):0, 7':2)am

Applying same observations to
r (1:21 e ,mmlz2a e )zn) y T ar(xm——lameZZ; e azn)a
then we easily get the proposed conclusions. This completes the proof. [

THEOREM 4. Let x1,--- ,zm € X be linearly independent vectors in
an n-inner product space X and

Y:=L(z1,  ,Zm)-
Let z3,--- , 2z, € X be linearly independent vectors such that
YNL (2, - ,2,) = {0}.

Then, for any x € X, we have the following:

ylg{" le_y7z27"' ,zn” = Lléi}l/l||x_y7z27"' aznu
— F(CC,.’El,'--,$m|22,-",2n):|1/2
F(IL']_,"' ,$m|22,"‘ ,Zn)

Proof. Let x € X be given. By Theorem 2,  can be uniquely repre-
sented as

z=u+v, u€y, (U7y|22a"'7zn):07 yey.
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Now, if y € Y is arbitrarily chosen, then
z—y=u—y+v, u—y€Y, (v,u—ylzz, - ,2n) =0
Therefore, it follows that

2 2 2
”:L‘*ya'z?’“')zn“ = ||u—y,z2,~-~,zn|| +“’U,22,"',Zn”

2 ”U,z27' i ,Zn“2

and the equality occurs when y = u. We conclude that

ylglf/ ”l‘-—y, 22yt 7Zn||
(3.8) .
= m1n||x—y,z2,~-~ azn” = ”’U,ZQ,'-- azn” .
yeyY

On the other hand, by Lemma 1, we have

I‘(:Eaml)"' ,xm|z23”' >Zn)
2
= ”U7227"' ’zn” F(x1>"' ,Z'mIZQ,"' 7zn)'
Also, T' (z1, -+ ,Zm|22,+ -+ ,2n) > 0 since 23, -+ , Ty, 22, -+ , 2, are lin-

early independent under given assumptions and so

F(l‘,:l]‘l,"' )xmlz%"' >zn)

2
V,29, 0 2 =
H e ’ n“ F(.’El,"' )xm|227"' 7zn)

bl

which in combination with (3.8) proves our assertion. This completes
the proof. O

COROLLARY 3. Let x1,--+ ,Zm, 22, "+ ,2, € X be linearly indepen-
dent vectors in an n-inner product space X for m > 2. Then we have
the following:

F(:E:l?"' 3"Em|223"' ,zn) F(IZ,"' axml227"' 7zn)
F(x1>"'7$k1227"'7zn) - F(CEQ,"‘,I]C’ZQ,"',Z”)
(39) =
3.9
<F($k,"',xm|22,"',2n)

T (zklze,- -+, 2n)
S ]-—‘(xk-l—la"' ,.’I/'m[ZQ,"' 7zn)
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for 1 < k < m. Moreover, the equality

P(x'r‘—la"' ,L'Cm|22,"' ,Zn) — F(x’l""' amm|z2y"' )zn)
F(x’r—la"' 7xk122a"' ,Zn) F(x’l‘f” 7Ikiz2a"' ,Zn)
occurs for some r € {2,--- ,k} if and only if
Tp—1 = Up +Vpr, Ur € L(zp, - ,2k), (Ur,x|22," - ,2,) =0

for all i = r,--- ,m. The equality

F(mk7...’xm|22,...’zn)
-T e Zmlze, e, 2n
F(in'Zz,"' 7Z'n.) (xk-f-la ,.’1? 122 Z)
occurs if and only if (zk,zi|z2, -+ ,zn) =0 foralli=k+1,--- ,m.

Proof. First, take k = 1. Then (3.9) reduces to

F(l‘l)." )xm'227"' 7Zn)
T (z1]22, -, 2n)

(310) SF(.’IJz, ,.’L’m|22,"' azn)v

which is, in fact, the inequality (3.7). Also, the equality in this inequal-

ity occurs if and only if (z1,zi|22,--- ,2,) =0foralli=2,--- ;m as we
proved for the inequality (3.7). Further, suppose that 1 < £ < m. Re-
placing x4, ,Zm in (3.10) by zk,- - - , Z,,, we obtain the last inequality

" in (3.10) and obviously the assertion on the equality case is true.
Next, for r € {2,--- ,k}, define the subspaces Y, and Y, by

Y;‘:‘L(mra"')x‘m>7 Y;-I=L(x7‘)"'7xk:)‘

By Theorem 2, the vector x,_; can be uniquely represented in the fol-
lowing two forms

Tro1 = Ur +Vp, Up €Yr, (U, 5|22, »2n) =0
foralli=r,---,m and
1 ! ! ! /
Tr—1 = U + Uy, U, EYrv (’UT,{E7;|Z2,"' ’Z")ZO

for all 4 = r,--- , k. Then, applying Theorem 4, we get
. 2 2
inf ||z,—1 —y,22, -, zall” = |lvr, 22, 2|
yeYsr
T (:DT—17:I:T‘) e ,meZQ, Tt )Z’n)
F(x'r,'" ,.’13m|22,"' ,Zn)
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and
‘ 2
lenlf/‘r’ “x’r‘—l —Y,22," " 7zn“2 = ||'U,:.,22,' o ’Zn”
— F(m'r‘—hx'ra"' ,iL'kIZz,"' 72")
L(zp, - zkl|ze, -, 2n)

But we have Y, C Y., which implies that

. 2 . 2
ylél}f",» ”x'f'—l —Y,22, 7zn|| < yleniﬁ; “‘TT—I —Y, 22, 7an ’
that is,
F(l'r_l,l'r,"' ,a?lez,"' ;zn) F(I'r‘—laxra"' ,.’L‘k|2:2,"- 7zn)
F(xr,...’xm|Z27...’Zn) - F(mr,...’xk|Z2,...’zn)

or, equivalently,

F(xr——laxr"" 7mmI227"' 7271) F(Z‘r,"' ,$m|22,"' )zn)

F(xr—laxh"' 7$k|z2a"' 7Zn) - F(xra"' ,$k|22,"' 7zn) .

(3.11)

Moreover, the equality in (3.11) occurs if and only if
2 2

(3.12) lvry 22, -+ 5 zn|” = HU;WZ?"" s 2nll”
Now, from z,_1 = ur + v, = u,. + v.., it follows that

U =Up— U, + U, Ur—u, €Y, and (Vp,ur —up|22, - ,2,) =0,
which implies

2 2 2
”U;-’ 22yt ,Zn” = “u'l‘ - U;., 225" ’Zn” + ”vr’z2a e 7Zn“ .
From the above inequality and (3.12), we get |lu, — ., 22, - , za||> =0,
which is possible only with u, — u.. = 0. This means that u, = u]. and
v, = v... In fact, (3.12) is equivalent to the requirement
!
Zpo1 = Up + Up, Up = U, € L(l'/,-, e ,.’L'k), (Uraxil‘zZy tU ,Zn) =0

for ¢ = r,--- ,m. This completes the proof. O
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COROLLARY 4. Let 1, ,x.,, € X be arbitrarily chosen vectors in
an n-inner product space X for m > 2 and z3, -+ ,2, € X be linearly
independent vectors such that

L(z1,-+ ,zm) N L (22, ,20) = {0}
Then we have the following:

P(.’L'l,"' 1 Chy Tht1," " ammlz%"' 7Z‘n)

3.13
( ) Sr(xl,"',xk|22,"',Zn)l—‘($k+1,"',:Um[ZQ,"',Zn)

for 1 < k < m. Moreover, the equality in (3.13) occurs if and only if one
of the following three conditions is satisfied:

(i) the vectors xy,- -,z are linearly dependent,
(ii) the vectors xg+y1,- -+ ,Zm are linearly dependent,
(iii) the vectors x1,--- , ., are linearly independent and

(fI)i,.’Bj‘ZQ,"' 7zn)=0> ZE{]-’ ak}a _]E{k+1, 7m}'

Proof. Ifxy,--- , 2, are linearly dependent, then (3.13) trivially holds
since the left hand side is zero and the right hand side is nonnegative.
Also, the equality in this case occurs in (3.13) if and only if the right
hand side is zero which is equivalent with the requirement that either
the vectors x1, - - - , zx are linearly dependent or the vectors zx41, - ,Tm
are linearly dependent. Further, if the vectors z1,--- ,z,, are linearly
independent, then x1,--- ,Zm, 22, ,2n are also linearly independent
and we can apply the first and the last inequality from (3.9) to obtain
the inequality

I‘(wla"' ,$m|Z2,"' azn)
F(IL';[,"' 7$k|22a"' 7zn)

SF(xk-i-l"" ,-T’m,Z27"' ,Zn),

which is equivalent to (3.13). Also, the equality occurs in (3.13) if and
only if we have the equalities throughout in (3.9), that is,

F((L‘k’-..’xm|22,...,zn)
314 T (@hrs s Tml2a - 7
(319 T (zklzz, -+, 2n) (Trt1, - > Tml22 Zn)
and
(315) F("Er—l,"' ’xmlz%u. ,Zn) — F(a"’f”“' 7xm|22a"' ,zn)

P(.’L’T._l,"' 7"1:Ic|z2"" 7Zn) B P(.’L‘r,"' ,CEklZQ,"' 7Z’n)
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for all r € {2,--- ,k}. Now, (3.14) is equivalent with
(3.16) (g, xi|22, - y2n) =0, i=k+1,---,m.
Next, (3.15) with r = k is equivalent with

Tpo1 = U+ Vg, Uk € L(xk)a (’Uk;,.’L'ilzz," ' ’zn) = 0’

(3.17) i=k,,m.

It is easy to see that (3.16) and (3.17) together are equivalent with
(zi,zj|22,-  y2n) =0, 1€{k—1,k}, je{k+1,--- ,m}.

Continuing the argument in this way for r = £ — 1,--- ,2, it follows
that we have the equalities throughout in (3.9) if and only if

(xiawj|z2a"' azn)=0a ZE{I, ak}’ ]€{k+1, 7m}'

This completes the proof. a

4. A generalization of Cauchy-Schwarz inequality

Let (X, (-,-],--+,+)) be an n-inner product space over the field of
real numbers K = R or the field of complex numbers K = C. For
given m € N, consider two sequences of vectors z1, -+ ,2, € X and
Y1, ,Ym € X. Then, for any given vectors z3,--- ,2, € X, we can
define the square matrix A of order m by

(l’hyllzz,"' 2n) o0 (T, ymlee, o 2m)
(41 A= . .
(xmay1|z27"' az'n) (xmvym|z27"' 7zn)
If we define
YZL(IL"' y Ly Y1yttt aym)a

then Y is a finite-dimensional linear subspace of X of dimension dimY =
k. If zo,+++ , z, are linearly independent and

YNL(ze, - ,2,) = {0},
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then we can choose the base {e,- - ,ex} for Y such that
(eivejlz% tr 7zn) = 51], 7’7] € {17 e ak}

Using the Parseval’s identity (2.11), it is easy to see that A can be
represented as

(xlvel|z2a"' ,Zn) ($1,€k|22,"‘ ,Zn)
A= : : :
(42) (fL'm,61|Z2,"' :zn) (xmyeklz27"' ,Zn)
(61,y1|22,"' azn) (elaym|227"' azn)
X : :
(ekayl1z27"' )Zn) (ek,ym|12,"' ,Zn)
If m > k, then obviously the vectors z1, - - - , Z,, must be linearly depen-
dent (the same is true for the vectors yi,--- ,ym), which implies that

the rows (columns) of the matrix A are linearly dependent and hence
det A =0.

LEMMA 2. If m < k, then we have the identity

(43) det A = Z g(jl:j?»"' )jm)n(j17j27"' 7jm)a
1<H1<fe<-<Im <k
where
g(jl’j%"' a]m)
(44) (ml,ejll22,... 72«”) (xl’ejm|22,... 7Z’n,)
(mm:ejl'zb"' ,Zn) (xmaejmlz%"' >Zn)
and
n(j11j27"' a.?m)
(4 5) (ej17y1|z27"' ,Zn) (ej17ymlz27"' azn)

(ejm,y1|227"' ,Zn) (ejmvym|z27"' ,Zn)
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Proof. Applying Binet-Cauchy’s theorem (see, for example, [2. p.
179]), we get (4.3) directly from (4.2). O

THEOREM 5. Let z1,--- , ., be given vectors in an n-inner product
space X. Set Y = L (z1,--- ,zm) and take any linearly independent vec-
tors zg, -+ , 2, € X suchthat YNL (z2,- -+ ,2,) = {0}. Ifk = dimY >m
and {e1,- - ,ex} is the base for Y such that

(eiaejlz27"' ,Zn) - 6ij7 Za] < {la ak}v
then

(46) F(-T17"' ,CL'm|252," . 7Zn) = Z |£ (j17j27" ) ajm)|27
1<51<g2<<jm <k

where £ (j1,j2, - ,jm) Is defined by (4.4).

Proof. Set y; = z; for j =1,--- ,m. Then, for the matrix A defined
by (4.1), we have

A=G(z1, - ,zm|22, ,2n), detA=T (21, - ,Tm|22, " ,2n)-

AlSO, for g(jl)j% e 7.7m) and n (j17j27 e 7.7m) ’ respectively, given by
(4.4) and (4.5), we have

n(j17j27"' 7.7m) = g(j17j27" ’ 7]m)

Therefore, (4.3) reduces to (4.6) in this case. This completes the proof. (]

THEOREM 6. Let {z1,- - ,Zm} and {y1, - ,Ym} be two sets of lin-
early independent vectors in an n-inner product space X. Set Y =
L(z1, -+ yZm,Y1, " ,Ym) and take any linearly independent vectors
Zo,+++ ,2n € X such that

YNL(zg, - ,2,) = {0}
If A is defined by (4.1), then
(47) IdetAlz < F(l’l,"' 7$m|227"' 7zn)]-—‘(yla'“ 7ym|'227"' 7zn)-

The equality occurs in (4.7) if and only if {z1, - , %} spans the same
subspace as {y1, - ,ym} does, that is, if and only if L (z1,- - ,Tp,) =
L(yla"' aym) =Y.
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Proof. Set k = dimY. Obviously k > m under given assumptions.
Take any base {e1,--- ,ex} for Y such that

(Ci,EleQ,"‘ azn) = 61:]" 7”.7 € {17 7k}

Then the identity (4.3) is valid and we can apply Cauchy’s inequality
for sequences to obtain the inequality

2 . . . 2
|detA| S E lg(.jlaj%"' ajm)l
1<51<je < <jm <k

X Z l’?(jl,jm'" 7jm)|2'

1<j1<j2< " <Jm <k

By (4.6), the first sum on the right hand side of the above inequality is
equal to
I"(xl’... ,.’1)le2,"' 7zn)’

while the second sum is equal to

L(y1, Ymlaz, -, 2n)

since, for the transpose M™ of a square matrix M, we have det M™ =
det M. Thus the above inequality is equivalent to (4.7). It remains the
question on the equality case in (4.7).

The orthonormal base {e1, - ,ex} for Y can always be chosen so that
the first m vectors are obtained by applying the procedure of getting
orthonormal vectors described in Corollary 1 to the vectors z1,--- ,Zm.
It is easy to see that, in this case, we can express the vectors z1, -+ ,Zm
in the form

1/2
1 =" €1,

1/2
Ty = < s ) [ar,lel + -+ o161+ e'r] , T=2,---,mm,

Yr—1
where

’YT‘ZF(IEl’... ,(IJT|22,--. ,zn), ’[":1’2,... ,m.
Therefore, for j =1,--- ,m, we get

1/2

(xlayj|z27"' 7zn)=’71 (elayj|z2a"' azn)
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and
(Tr, Ysl22,+ , 2n)
" 1/2
_ <_.T—> x[ar’l (el,fyjI22,... ,zn)_'_...
Yr-1
+ Qrr—1 (eT'—la yjlz27 tee 7zn) + (87‘7 yj|22» e ’zn)]
for r = 2,--- ,m. Using this and the elementary properties of determi-

nant, we get

det A=T(z1, -+ ,&m|22, - ,zn)l/zdetB,

where
(elayﬂZZa"' ,Zn) (Cl,yQIZZ,"' 1271) (el7ym|22,"' yz")
(62,y1|22,"' yzn) (627y2lz27"' 7Zn) (e2yym'221"' 7zn)
(emayllz%"' ,Zn) (em,leZQa"' vZn) (emvyTTL‘Z?v"' 7211)

This means that
|det A =T (21, , Zm|22," - , zn) |det BJ*.
Note that actually we have
det B=1n(1,2,---,m),

where 7 (j17j27 e 7.7m) for 1 < jl < j2 <---< Jm <kis given by (45)
Now, the equality in (4.7) is equivalent with the requirement that

(4.8) T (Y1, Ymlz2,+ ,2n) = IdetBI2 =In(1,2,--- ,m)[z.

On the other hand, by Theorem 5, we have

(49) P(yla"' aym|z2a"' 7zn) = Z |77(j1aj27"' 7jm)|2-

1Shi<je<<jm<k

From the equalities (4.8) and (4.9), it follows that the equality in (4.7)
holds if and only if

(410) 77(j1;j27"' ’jM)=0’ (jl,jz,"',jm)?é(l,2,“',m)-
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Further, for i =m +1,--- , k, consider the vectors
(61,y1|22,"' ,zn) (elaym|z2>"' 7zn) €1
Vi = (em7y1|22,' * ,zn) T (em,ym|z2a' o >Zn) €m
(enntnlee, v szn) o (eintmloa, o hzm) | e

Expanding the above determinant over the last column and using (4.10),
we get
v,=n(1,2,--- ,m)e;, i=m+1,--- k.

On the other hand, we have, for all j = 1,2,--- ,m and all i = m +
1,k

(vi)yjIZQa"' 7Zn)
(elyyllz27"' 7Zn) (elyymlz27"' 7Zn) (elyyj|227"' ,Zn)
(€m7y1|22y"' ,Zn) (CM7ym|z27"' ,Zn) (em,yj|z2,~- azﬂ-)
(ei1y1'227"' 7zn) (eivym|z21"' 7Zn) (e'i’yjIZZa"' ;Z‘n)
=0

since two columns in this determinant are identical. This implies that

(Uz',yj|22,"' ,Zn)

=0
T’(li2) 7m)

(eiayjlz% e ,zn) =

forall i=m+1,---,kand j = 1,2,--- ,m. Using this and the fact
that any y € Y is uniquely represented as y = Zle (y,eilz2,- -, 2n) €,
we see that, for all j =1,2,--- ,m,

m
Y; = Z(yj)eiIZZ,"' ,Zn)ei € L(elv"' aem) =L($1,“' amm)-
i=1
This means that yi1,--- , ¥m span the same subspace as the one spanned
by z1, -+, T since yi,--- ,Ym are linearly independent. Therefore,

(4.10) is equivalent to the requirement that L (21, -+ ,2Zm) = L(y1," -,
Ym ). This completes the proof. O
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COROLLARY 5. Let zq,--- ,xy and y; be given vectors in an n-inner

product space X. Suppose that x1,--- , Z, are linearly independent and
take any linearly independent vectors zs,- - - ,zn, € X such that

L(xl,"' ,xm7y1)mL(22,"' ,zn) - {0}

Then we have the following:

I1(x1 +y1,x27"' 7xm.22"" 7zn)1/2
(411) < F(Il,w2,"' axm|22>"' 7zn)1/2
+F(y1,$27"' ,$m|22,"' ;Zn)1/2-

The equality occurs in (4.11) if and only if

(4.12) y1=Ar14+u, A>20, u€ L(xg, - ,Zm).

Proof. Using the elementary properties of determinant, we easily get
the following identity

F(.Tl +y17$27"' ,l'm|22,"' 7zn)
=T (21,22, ,&Tm|22, " ,2,) +det A
+detA+1"(y1,x2,--- aw‘mlzZ:"' azn)a

where
(-’El,y1|z2,"' ,zn) (w]_,.’E2|22,'-- 72’71) (.’El,wmIZQ,-'- ,zn)
(3’2,3/1]227"‘ ,Zn) (.’EQ,CI?QIZQ,'“ 7Zn) ($2,mm|22,'-- ,Zn)
(ﬁm,y1|z2,"' ,Zn) (wmvaIZQv"' 7z‘ﬂ) (wm,(ﬂmIZQ,'“ 7Zn)

Applying Theorem 6 to the sets of vectors {z1,z2, - ,zm} and {y1, z2,
: 7xm}7 we get

|det A|

1/2 1/2
SF(CL'],(L'Q,"' y Tm|Z2, - )Z‘n)/ F(y17w2a"' Yy Tm|%2, """ ,Zn)/ .
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Therefore, we have

F(:v1+y1,:v2,--- ,xleZ,"' ;Zn)

=T (z1,%2, - ,Tm|22, ,2n) +det A+ det A
+ T (Y1,%2, - s Tml22,++ y 2n)

=T (21,22, ,Zm|z2, -, 2n) + 2Re [det 4]
+T (g1, %2, Tml22, "+ %n)

< T'(zy,Z2, -+ ,Tm|22, + , 2n) + 2 |det A|
+T(y1,%2, , Tml22, 5 2n)

<T(z1,22, ", Tml|22,* , 2Zn)
+T (21,22, T2z, 20) 2T (Y1, T2, T2y 20) M2
+ T (y1, %2, , Tml22, -+, 20)

= [F($1,1¢2,--~ N P e

2
+F(y1,$2,"' ,.'Em|22,"' )Zn)1/2] ’

which yields (4.11). Obviously, we have equality in (4.11) if and only if

Re[det A] = |det A]

(4.13) = F($1,5E2,"' ,.’EleQ,"' )z’n)l/z

x T (Y1, @2, Tml22, o+, 20) /2.

The first equality in (4.13) is equivalent with det A > 0, while the sec-

ond one holds if and only if y;,22,--- ,z,, are linearly dependent or
L(y1,z2, " yZm) =L (z1,22, -+ ,Zp,) . In the case when y3,22,- - , T
are linearly dependent, we have y; =u € L (23, -+ ,Zm) and det A =0,

while in the case when

L(ylaxZa"' 71’.777.) ZL(.'L'l,.'IJQ,"' 7xm)7
we have y; = Az; + u for some X # 0 and some u € L(za, -+ ,Zm). In
this case, we get det A = AT (z1, 22, -+ , Tm|22,- - , 2n) and so the con-

dition det A > 0 is equivalent with the condition A > 0. This proves that
the equality occurs in (4.11) if and only if (4.12) holds. This completes
the proof. a
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5. A generalization of Bessel’s inequality
Let (X, (,-]",- -+ ,+)) be an n-inner product space over the field of real

numbers K = R or the field of complex numbers K = C. In this section,
we give a generalization of Bessel’s inequality

k
2
(5.1) Y @ eslza, sz’ < w2, zall?
i=1
which holds for any £ € X whenever ey, -- ,ex,22," - ,2p, € X are

linearly independent vectors such that

(eiaej|227 v 7zn) = 5ijv 7/7.7 € {1, th ak}
Also, we know that the equality occurs in (5.1) if and only if z =u + v
for some v € L(e1, - ,ex) and v € L(zg,- - ,2pn).

THEOREM 7. Let X be an n-inner product space and x1, - , Tm, 22,
-, 2, € X be linearly independent vectors from X. For any given
vector x € X, define

)‘i = (IU,(Ei'Zz,"' ,Zn)’ 1= ]—a , M.
If A =T (z1, - ,Tm|22, - ,2n) and A; is equal to the determinant
obtained from A by replacing the i* row of T'(z1, -+ ,ZTwm|22,"* ,2n)

with (A1, ,Am) fori=1,---,m, then we have the following:

m
E DTy 22, 5 2n
i=1

The equality in (5.2) occurs if and only if there exists a vector v €
L (za,--+ ,2p,) such that

(5.2) <Az, 22,0, 20 -

1 m
T = Z E A,»xi + .
i=1
Proof. Note that A > 0 and consider the vector y € X defined by

1 m
y:ZZmi, ;€K ,i=1,---,m.

=1
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Then we have

J 1 &
(y71’.|z27" " ,Zn) = —A— Zéi(xaxilZZ)' tt ,Zn) = Z;(s%)‘z

i=1
and
1 m m .
(y,ylzz, T ,zn) = F 225163 (xi’xi|z27 tt ’zn) .
: i=1j=1
The requirement that (y,z|z2,---,%n) = (¥,¥yl22, - ,2n) is therefore
equivalent with
m . 1 m m L
(53) Z 5,/\1 = E Z 515J ((L‘i, CL‘ilZz, s ,Zn) .
i=1 i=1 j=1

— 1 &
i = ZZ%‘ (x5, xi|z2, - ,20), i=1,---,m,
i=1
that is,
m
(5.4) Z(Cﬂj,-’ﬂi'Zz,-.. yZn) 6 = AN, i=1,---,m.
Jj=1

The matrix of the above system of linear equations has determinant
equal to ' (xq, -+ ,Zm|22,  ,2n) = A > 0. Therefore, the system (5.4)
has unique solution given as

(xl,x1|22’...’zn) A)\l (wm7w1|227"'7zn)
N (1, Zml|22, "+, Zn) ﬁ)ﬁ,} (T, Tml22, -+ 5 2n)
jthcolumn
_ Lan,
A 7

=Aj, j=1,---,m.

We conclude that, for the vector y € X defined by

1 m
= A’imiv
>
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(y,x|z2,~ o 7Z'n) = (yaylz2’ Tt 7Zn)

and

($»y|22a' v azn) = (y,x|22,~ te azn) = (yaylz2)' o 7zn) .

Thus, using this, we get

0< llz—y 22, zall?
= (z-y,z—ylzz, -, 2)
= ||z, 22, 20l = 2(%,yl72, s 2n) + 922, 2all”
= fl&, 22, zall® = gy 22, 2z’

or, equivalently,

1
||y1227"' 7zn“=—A_ S||$7227"' 7Zn”a

m
E Aixi,ZQ,“' )y Zn
i=1

which is equivalent to (5.2). Moreover, the equality occurs in the above
inequality and hence in (5.2) if and only if  — y, 22, - - , 2, are linearly
dependent, that is,
T—y=v€L(zg, - ,2,)

since 23, - - , z, are linearly independent. This completes the proof. O

REMARK 4. (1) The inequality (5.2) can be regarded as a gener-
alization of the Cauchy-Schwarz-Bunjakowsky inequality. Namely, for
m = 1, we have

A= (x17x1l227”' >zn>7 Ay=X = (CL',CE1]ZQ,"' 7Zn)

and (5.2) reduces to

|(£L‘,.’IJ1IZQ,"' >Z'n)| \/(.’131,1171|22,"' 7zn)
S (xlywllz2a"' ,Zn) V (xax|227'” 7Z’n,)

or, equivalently,

|($,$1|22,'-' 7zn)|2 S (mlwxl‘zZ?"' 7zn) (.’L‘,il?lz;’)_,"' 7zn) .
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The equality occurs if and only if

— ($,$1I22,‘ o ,Zn) x4+ v
(x17x1|z21 e ,Zn)
for some v € L(z2, -+ ,2,). This is just the Cauchy-Schwarz-Bunja-
kowsky inequality stated for the vectors z, x1, 29, -+ , 2, € X such that
x1,22,- - , 2 are linearly independent.

(2) Suppose that z1,- -,z satisfy additional condition
(@i, xjlze, <+ ,2n) =85, i,5€{1,---,m}.
In this case, we have
A=1 and A; =X\ = (z,zi|22,- " ,24), t=1,--,m,

and so (5.2) becomes

m
Z(xyxilzz,"' 1 2n) Tis 22,7 s Zn|| S {17,225 2|
=1
or, equivalently,
m
2 2
Z '(.T, x’i'zZa T ,Z'n,), S ”l‘, 22y 7zn” ’
i=1
which is just the Bessel’s inequality (5.1) where k = m and e;,--- ,eg
are replaced with x1,: - , z,,. The equality holds in this case if and only
if
m
T = Z(cc,:vi|z2,~- ) Zn) T + U
i=1
for some v € L (22, , zn).

COROLLARY 6. Let X be an n-inner product space and a, b, z3,- - -,
zn € X be the vectors such that a,b, z9,- - - , z, are linearly independent.
For any given vector x € X, define

m= (IE,a|Z2,-" ’Zn)v V= (‘T,b|22"" ,Zn).
Then we have the following:
(55)  T(a,blz2, -+ 2zn) @, 22, s 20l|” > [Pa — b, 22, , za®.
The equality in (5.5) occurs if and only if
- (a,7a — @blzg, -+ ,2p) b— (b,Ta — T@blzg, -+ ,2n) @ to
r (a7 b|z27 te azn)

for some vector v € L (23, - , zp).
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Proof. We apply Theorem 7 with m = 2, z; = a and 23 = b. Then
we have

)\I:llﬂ }‘2:1/) A=F(a,b|22,--~,zn)

and
H v
A =
! '(b7a|22)"' 7Z'n) (byblz2a"' 7zn)
= H(b,blZQ,"’ )ZTL) —V(b,a|Z2,"‘ azn)
= - (b,ﬁa—ﬁb122,"' 7zn)a
A, = (a7alz2"" ,Zn) (a,blZz,“' ,Zn)
2 u y
- V(a,(l|22,"' azn) —,u(a,b|22,--- ;zn)
= (a,va’_ﬁbl‘zQa"' ,Zn)-

Consider the vector
7= Ara+ Agb= (a,7a —Tb|z2,- -+ ,2,)b— (b,Ta — |z, -+ , 2,) a.
We know from (5.2) that
19, 22, s 2nll < Allw, 22, znll =T (a,blz2,+++ , 2n) |2, 22, 20|
or, equivalently,
(T, Fl22, -+ »20) ST (ayblza, -+, 20)° (2, |22, -, 20) -

This is a consequence of the equality (y,y|2z2, - ,2n) = (y, |22, - , 2n)
which holds for the vector

] y

Y=A T (a,blz2, -+ y2n)

Note that the equality (y,y|22, "+, 2s) = (¥, 2|22, , 2) is equivalent
with

(g>g|227 ot azn)

r (a) b|22, T 7zn)

= (?:/,17'22,"' ,Zn).
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Therefore, we have

2

F(aa b’Z2’ o 7211) ”.TE, 2250 az'n”
(ﬂ,?:/|227"' ,Zn)
- F((l,biZQ,"' azn)

= (§,x|z2," "+, zn)

= ((a,7a —@blzz, - ,2n)b— (b,Ta — fblzg, -+ ,zn) a, |22, -+ , 2p)
(a,Va —@b|za, -+ ,2p) T — (b,Da — Tb|z2, -+ ,2,) T

(va — b, va — fib|za, - - - , 2n)

_ —_ 2
= ||Va—l'l’bvz2"” ’Zn” )

which is just the inequality (5.5). Also, we know from Theorem 7 that
the equality occurs if and only if

Y
r (a,b|z2, e azn)

T=y+v= +v, UEL(ZQa'”aZn)-

This completes the proof. O

THEOREM 8. Let X be an n-inner product space over the field K = R
of real numbers. Let a,b,z2,--- ,2, € X and ey, - ,ey, € X be the
vectors from X such that a,b, 29, - , 2z, are linearly independent and,
for all 1,5 € {1,--- ,m},

(eiaejlz27"' y2n) = 045
and
(5 6) (a‘7 ej1z27 T >Zn) (b7 6;’]2’2, ot azn)
' 7é (a,eilz%"' 7zn) (b,EleQ," ’ 7ZTL)

for i # j. If p;; € R fori,j € {1,---,m} with i # j are given real
numbers which satisfy the conditions

(57) Pij = Pji, 'L;é], 7’7.7 € {17 ’m}7
and

P = Z pij # 0,

1<i<i<m
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then, for any two scalars u,v € R,

775

P2“VCL—,LLb,Z2, . zn” <Z Z ng —ub,ej|z2,--- 7zn)
r (a, b|22, e zn i=1 |igj=1 Yij
where y;; are defined by
Yij = (a,€j|za, -+ ,2n) (b, €22, , 2n)
- (CL,CiIZQ, te 7271) (ba Cj'ZQ, e 7zn) .
Proof. For any two scalars u,v € R, consider the vector
- i i pij (va — b, ej]22, - - - ,Zn)e.
= i
i=1 ifj=1 Vi
Using the properties of n-inner product (-, |, ,-), in the real case, we

get

’

(Z,al22, -, 2n) = I/Z Z pij (a,ejlza, -+, 2n) (a, €5]22, - -

i=1 z;éj 1 Yij

ng (b, e]|22> " ,Zn) (a,e5|z2, -+, 2n)
Yy :

1=1 i#£5=1

On the other hand, using the condition (5.7) and obvious fact that

Yig = —Vji» Z#Ja Z,]E{l,,m},

we easily see that

Yij

m m
Z Z Dij (a,e5|z2, -+, 2n) (@, €522, , 2) _o
1=1 iFj=1

and

m m
Dij b,e'ZQ,"' yZn) (@, €422, , 2
> 3 mbabnbabe ) o 5 gy

i=1i#j=1 Vi 1<i<j<m
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Therefore, we have
(Z,alz2, ++ ,2n) = uP.

Similarly, we get
(Z,blz2, -+, 2n) = VP.

Therefore, we can apply Corollary 6 to the vector z = Z/P and so, by
(5.5), we have

r (a', b|Z2, te ’Zn) ”ja 22yt 7Zn“2
P2
. 2
z
= F(a,b|z2,~-- ’Zn) F,Z%"' y Zn
Z Hﬁa‘ - ﬁba 22yt 7Z’n||2
or, equivalently,
2||l/a_/~1'byz27"' ,Zn||2 < ”i Yo rer 2 ”2
F(a,b|zg,~-- 7zn) = y %2 ) 41 .
Now, applying Parseval’s identity to the term ||Z, 23, - - - ,zn||2 , we have
the conclusion. This completes the proof. g

COROLLARY 7. Under assumptions of Theorem 8, we have the fol-
lowing:

2

2 2
<m> ||l/0,-—}1,b|22,"‘ ’zn” < in: i (Va_ﬂbvej|z2a"' ,Zn)
2 T (a,b2, - ,22) ~ = Ryl Yij

for any two scalars u,v € R.

Proof. Set p;; =1for all ¢ # j, ¢,5 € {1,--- ,m} and note that

P= Y py= (7;’)

1<i<j<m

Then, applying Theorem 8, we have the conclusion. O
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