• Title/Summary/Keyword: 2-dimensional visualization

Search Result 328, Processing Time 0.029 seconds

D4AR - A 4-DIMENSIONAL AUGMENTED REALITY - MODEL FOR AUTOMATION AND VISUALIZATION OF CONSTRUCTION PROGRESS MONITORING

  • Mani Golparvar-Fard;Feniosky Pena-Mora
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.30-31
    • /
    • 2009
  • Early detection of schedule delay in field construction activities is vital to project management. It provides the opportunity to initiate remedial actions and increases the chance of controlling such overruns or minimizing their impacts. This entails project managers to design, implement, and maintain a systematic approach for progress monitoring to promptly identify, process and communicate discrepancies between actual and as-planned performances as early as possible. Despite importance, systematic implementation of progress monitoring is challenging: (1) Current progress monitoring is time-consuming as it needs extensive as-planned and as-built data collection; (2) The excessive amount of work required to be performed may cause human-errors and reduce the quality of manually collected data and since only an approximate visual inspection is usually performed, makes the collected data subjective; (3) Existing methods of progress monitoring are also non-systematic and may also create a time-lag between the time progress is reported and the time progress is actually accomplished; (4) Progress reports are visually complex, and do not reflect spatial aspects of construction; and (5) Current reporting methods increase the time required to describe and explain progress in coordination meetings and in turn could delay the decision making process. In summary, with current methods, it may be not be easy to understand the progress situation clearly and quickly. To overcome such inefficiencies, this research focuses on exploring application of unsorted daily progress photograph logs - available on any construction site - as well as IFC-based 4D models for progress monitoring. Our approach is based on computing, from the images themselves, the photographer's locations and orientations, along with a sparse 3D geometric representation of the as-built scene using daily progress photographs and superimposition of the reconstructed scene over the as-planned 4D model. Within such an environment, progress photographs are registered in the virtual as-planned environment, allowing a large unstructured collection of daily construction images to be interactively explored. In addition, sparse reconstructed scenes superimposed over 4D models allow site images to be geo-registered with the as-planned components and consequently, a location-based image processing technique to be implemented and progress data to be extracted automatically. The result of progress comparison study between as-planned and as-built performances can subsequently be visualized in the D4AR - 4D Augmented Reality - environment using a traffic light metaphor. In such an environment, project participants would be able to: 1) use the 4D as-planned model as a baseline for progress monitoring, compare it to daily construction photographs and study workspace logistics; 2) interactively and remotely explore registered construction photographs in a 3D environment; 3) analyze registered images and quantify as-built progress; 4) measure discrepancies between as-planned and as-built performances; and 5) visually represent progress discrepancies through superimposition of 4D as-planned models over progress photographs, make control decisions and effectively communicate those with project participants. We present our preliminary results on two ongoing construction projects and discuss implementation, perceived benefits and future potential enhancement of this new technology in construction, in all fronts of automatic data collection, processing and communication.

  • PDF

Contents and Sequences for Line Segments, Straight Lines, and Rays in Elementary Mathematics Curricula and Textbooks (선분, 직선, 반직선의 학습 내용과 학습 계열 분석)

  • Kim, Sangmee
    • Communications of Mathematical Education
    • /
    • v.37 no.4
    • /
    • pp.635-652
    • /
    • 2023
  • This study conducts a comprehensive analysis of the curricular progression of the concepts and learning sequences of 'lines', specifically, 'line segments', 'straight lines', and 'rays', at the elementary school level. By examining mathematics curricula and textbooks, spanning from 2nd to 7th and 2007, 2009, 2015, and up to 2022 revised version, the study investigates the timing and methods of introducing these essential geometric concepts. It also explores the sequential delivery of instruction and the key focal points of pedagogy. Through the analysis of shifts in the timing and definitions, it becomes evident that these concepts of lines have predominantly been integrated as integral components of two-dimensional plane figures. This includes their role in defining the sides of polygons and the angles formed by lines. This perspective underscores the importance of providing ample opportunities for students to explore these basic geometric entities. Furthermore, the definitions of line segments, straight lines, and rays, their interrelations with points, and the relationships established between different types of lines significantly influence the development of these core concepts. Lastly, the study emphasizes the significance of introducing fundamental mathematical concepts, such as the notion of straight lines as the shortest distance in line segments and the concept of lines extending infinitely (infiniteness) in straight lines and rays. These ideas serve as foundational elements of mathematical thinking, emphasizing the necessity for students to grasp concretely these concepts through visualization and experiences in their daily surroundings. This progression aligns with a shift towards the comprehension of Euclidean geometry. This research suggests a comprehensive reassessment of how line concepts are introduced and taught, with a particular focus on connecting real-life exploratory experiences to the foundational principles of geometry, thereby enhancing the quality of mathematics education.

Usefulness of Region Cut Subtraction in Fusion & MIP 3D Reconstruction Image (Fusion & Maximum Intensity Projection 3D 재구성 영상에서 Region Cut Subtraction의 유용성)

  • Moon, A-Reum;Chi, Yong-Gi;Choi, Sung-Wook;Lee, Hyuk;Lee, Kyoo-Bok;Seok, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.18-23
    • /
    • 2010
  • Purpose: PET/CT combines functional and morphologic data and increases diagnostic accuracy in a variety of malignancies. Especially reconstructed Fusion PET/CT images or MIP (Maximum Intensity Projection) images from a 2-dimensional image to a 3-dimensional one are useful in visualization of the lesion. But in Fusion & MIP 3D reconstruction image, due to hot uptake by urine or urostomy bag, lesion is overlapped so it is difficult that we can distinguish the lesion with the naked eye. This research tries to improve a distinction by removing parts of hot uptake. Materials and Methods: This research has been conducted the object of patients who have went to our hospital from September 2008 to March 2009 and have a lot of urine of remaining volume as disease of uterus, bladder, rectum in the result of PET/CT examination. We used GE Company's Advantage Workstation AW4.3 05 Version Volume Viewer program. As an analysis method, set up ROI in region of removal in axial volume image, select Cut Outside and apply same method in coronal volume image. Next, adjust minimum value in Threshold of 3D Tools, select subtraction in Advanced Processing. It makes Fusion & MIP images and compares them with the image no using Region Cut Definition. Results: In Fusion & MIP 3D reconstruction image, it makes Fusion & MIP images and compares them by using Advantage Workstation AW4.3 05's Region Cut Subtraction, parts of hot uptake according to patient's urine can be removed. Distinction of lesion was clearly reconstructed in image using Region Cut Definition. Conclusion: After examining the patients showing hot uptake on account of volume of urine intake in bladder, in process of reconstruction image, if parts of hot uptake would be removed, it could contribute to offering much better diagnostic information than image subtraction of conventional method. Especially in case of disease of uterus, bladder and rectum, it will be helpful for qualitative improvement of image.

  • PDF

Digital Twin-based Cadastral Resurvey Performance Sharing Platform Design and Implementation (디지털트윈 기반의 지적재조사 성과공유 플랫폼 설계 및 구현)

  • Kim, IL
    • Journal of Cadastre & Land InformatiX
    • /
    • v.53 no.1
    • /
    • pp.37-46
    • /
    • 2023
  • As real estate values rise, interest in cadastral resurvey is increasing. Accordingly, a cadastral resurvey project is actively underway for drone operation through securing work efficiency and improving accuracy. The need for utilization and management of cadastral resurvey results (drone images) is being raised, and through this study, a 3D spatial information platform was developed to solve the existing drone image management and utilization limitations and to provide drone image-based 3D cadastral information. It is proposed to build and use. The study area was selected as a district that completed the latest cadastral resurvey project in which the study was organized in February 2023. Afterwards, a web-based 3D platform was applied to the study to solve the user's spatial limitations, and the platform was designed and implemented based on drone images, spatial information, and attribute information. Major functions such as visualization of cadastral resurvey results based on 3D information and comparison of performance between previous cadastral maps and final cadastral maps were implemented. Through the open platform established in this study, anyone can easily utilize the cadastral resurvey results, and it is expected to utilize and share systematic cadastral resurvey results based on 3-dimensional information that reflects the actual business district. In addition, a continuous management plan was proposed by integrating the distributed results into one platform. It is expected that the usability of the 3D platform will be further improved if a platform is established for the whole country in the future and a service linked to the cadastral resurvey administrative system is established.

Development and Feasibility Study for Phase Contrast MR Angiography at Low Tesla Open-MRI System (저자장 자기공명영상 시스템에서의 위상대조도 혈관조영기법의 개발과 그 유용성에 대한 연구)

  • Lee, Dong-Hoon;Hong, Cheol-Pyo;Lee, Man-Woo;Han, Bong-Soo
    • Progress in Medical Physics
    • /
    • v.23 no.3
    • /
    • pp.177-187
    • /
    • 2012
  • Magnetic resonance angiography (MRA) techniques are widely used in diagnosis of vascular disorders such as hemadostenosis and aneurism. Especially, phase contrast (PC) MRA technique, which is a typical non contrast-enhanced MRA technique, provides not only the anatomy of blood vessels but also flow velocity. In this study, we developed the 2- and 3-dimensional PC MRA pulse sequences for a low magnetic field MRI system. Vessel images were acquired using 2D and 3D PC MRA and the velocities of the blood flow were measured in the superior sagittal sinus, straight sinus and the confluence of the two. The 2D PC MRA provided the good quality of vascular images for large vessels but the poor quality for small ones. Although 3D PC MRA gave more improved visualization of small vessels than 2D PC MRA, the image quality was not enough to be used for diagnosis of the small vessels due to the low SNR and field homogeneity of the low field MRI system. The measured blood velocities were $25.46{\pm}0.73cm/sec$, $24.02{\pm}0.34cm/sec$ and $26.15{\pm}1.50cm/sec$ in the superior sagittal sinus, straight sinus and the confluence of the two, respectively, which showed good agreement with the previous experimental values. Thus, the developed PC MRA technique for low field MRI system is expected to provide the useful velocity information to diagnose the large brain vessels.

Patients Setup Verification Tool for RT (PSVTS) : DRR, Simulation, Portal and Digital images (방사선치료 시 환자자세 검증을 위한 분석용 도구 개발)

  • Lee Suk;Seong Jinsil;Kwon Soo I1;Chu Sung Sil;Lee Chang Geol;Suh Chang Ok
    • Radiation Oncology Journal
    • /
    • v.21 no.1
    • /
    • pp.100-106
    • /
    • 2003
  • Purpose : To develop a patients' setup verification tool (PSVT) to verify the alignment of the machine and the target isocenters, and the reproduclbility of patients' setup for three dimensional conformal radiotherapy (3DCRT) and intensity modulated radiotherapy (IMRT). The utilization of this system is evaluated through phantom and patient case studies. Materials and methods : We developed and clinically tested a new method for patients' setup verification, using digitally reconstructed radiography (DRR), simulation, porial and digital images. The PSVT system was networked to a Pentium PC for the transmission of the acquired images to the PC for analysis. To verify the alignment of the machine and target isocenters, orthogonal pairs of simulation images were used as verification images. Errors in the isocenter alignment were measured by comparing the verification images with DRR of CT Images. Orthogonal films were taken of all the patients once a week. These verification films were compared with the DRR were used for the treatment setup. By performing this procedure every treatment, using humanoid phantom and patient cases, the errors of localization can be analyzed, with adjustments made from the translation. The reproducibility of the patients' setup was verified using portal and digital images. Results : The PSVT system was developed to verify the alignment of the machine and the target isocenters, and the reproducibility of the patients' setup for 3DCRT and IMRT. The results show that the localization errors are 0.8$\pm$0.2 mm (AP) and 1.0$\pm$0.3 mm (Lateral) in the cases relating to the brain and 1.1$\pm$0.5 mm (AP) and 1.0$\pm$0.6 mm (Lateral) in the cases relating to the pelvis. The reproducibility of the patients' setup was verified by visualization, using real-time image acquisition, leading to the practical utilization of our software Conclusions : A PSVT system was developed for the verification of the alignment between machine and the target isocenters, and the reproduclbility of the patients' setup in 3DCRT and IMRT. With adjustment of the completed GUI-based algorithm, and a good quality DRR image, our software may be used for clinical applications.

Strategy for Store Management Using SOM Based on RFM (RFM 기반 SOM을 이용한 매장관리 전략 도출)

  • Jeong, Yoon Jeong;Choi, Il Young;Kim, Jae Kyeong;Choi, Ju Choel
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.2
    • /
    • pp.93-112
    • /
    • 2015
  • Depending on the change in consumer's consumption pattern, existing retail shop has evolved in hypermarket or convenience store offering grocery and daily products mostly. Therefore, it is important to maintain the inventory levels and proper product configuration for effectively utilize the limited space in the retail store and increasing sales. Accordingly, this study proposed proper product configuration and inventory level strategy based on RFM(Recency, Frequency, Monetary) model and SOM(self-organizing map) for manage the retail shop effectively. RFM model is analytic model to analyze customer behaviors based on the past customer's buying activities. And it can differentiates important customers from large data by three variables. R represents recency, which refers to the last purchase of commodities. The latest consuming customer has bigger R. F represents frequency, which refers to the number of transactions in a particular period and M represents monetary, which refers to consumption money amount in a particular period. Thus, RFM method has been known to be a very effective model for customer segmentation. In this study, using a normalized value of the RFM variables, SOM cluster analysis was performed. SOM is regarded as one of the most distinguished artificial neural network models in the unsupervised learning tool space. It is a popular tool for clustering and visualization of high dimensional data in such a way that similar items are grouped spatially close to one another. In particular, it has been successfully applied in various technical fields for finding patterns. In our research, the procedure tries to find sales patterns by analyzing product sales records with Recency, Frequency and Monetary values. And to suggest a business strategy, we conduct the decision tree based on SOM results. To validate the proposed procedure in this study, we adopted the M-mart data collected between 2014.01.01~2014.12.31. Each product get the value of R, F, M, and they are clustered by 9 using SOM. And we also performed three tests using the weekday data, weekend data, whole data in order to analyze the sales pattern change. In order to propose the strategy of each cluster, we examine the criteria of product clustering. The clusters through the SOM can be explained by the characteristics of these clusters of decision trees. As a result, we can suggest the inventory management strategy of each 9 clusters through the suggested procedures of the study. The highest of all three value(R, F, M) cluster's products need to have high level of the inventory as well as to be disposed in a place where it can be increasing customer's path. In contrast, the lowest of all three value(R, F, M) cluster's products need to have low level of inventory as well as to be disposed in a place where visibility is low. The highest R value cluster's products is usually new releases products, and need to be placed on the front of the store. And, manager should decrease inventory levels gradually in the highest F value cluster's products purchased in the past. Because, we assume that cluster has lower R value and the M value than the average value of good. And it can be deduced that product are sold poorly in recent days and total sales also will be lower than the frequency. The procedure presented in this study is expected to contribute to raising the profitability of the retail store. The paper is organized as follows. The second chapter briefly reviews the literature related to this study. The third chapter suggests procedures for research proposals, and the fourth chapter applied suggested procedure using the actual product sales data. Finally, the fifth chapter described the conclusion of the study and further research.

A Study on Ontology and Topic Modeling-based Multi-dimensional Knowledge Map Services (온톨로지와 토픽모델링 기반 다차원 연계 지식맵 서비스 연구)

  • Jeong, Hanjo
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.79-92
    • /
    • 2015
  • Knowledge map is widely used to represent knowledge in many domains. This paper presents a method of integrating the national R&D data and assists of users to navigate the integrated data via using a knowledge map service. The knowledge map service is built by using a lightweight ontology and a topic modeling method. The national R&D data is integrated with the research project as its center, i.e., the other R&D data such as research papers, patents, and reports are connected with the research project as its outputs. The lightweight ontology is used to represent the simple relationships between the integrated data such as project-outputs relationships, document-author relationships, and document-topic relationships. Knowledge map enables us to infer further relationships such as co-author and co-topic relationships. To extract the relationships between the integrated data, a Relational Data-to-Triples transformer is implemented. Also, a topic modeling approach is introduced to extract the document-topic relationships. A triple store is used to manage and process the ontology data while preserving the network characteristics of knowledge map service. Knowledge map can be divided into two types: one is a knowledge map used in the area of knowledge management to store, manage and process the organizations' data as knowledge, the other is a knowledge map for analyzing and representing knowledge extracted from the science & technology documents. This research focuses on the latter one. In this research, a knowledge map service is introduced for integrating the national R&D data obtained from National Digital Science Library (NDSL) and National Science & Technology Information Service (NTIS), which are two major repository and service of national R&D data servicing in Korea. A lightweight ontology is used to design and build a knowledge map. Using the lightweight ontology enables us to represent and process knowledge as a simple network and it fits in with the knowledge navigation and visualization characteristics of the knowledge map. The lightweight ontology is used to represent the entities and their relationships in the knowledge maps, and an ontology repository is created to store and process the ontology. In the ontologies, researchers are implicitly connected by the national R&D data as the author relationships and the performer relationships. A knowledge map for displaying researchers' network is created, and the researchers' network is created by the co-authoring relationships of the national R&D documents and the co-participation relationships of the national R&D projects. To sum up, a knowledge map-service system based on topic modeling and ontology is introduced for processing knowledge about the national R&D data such as research projects, papers, patent, project reports, and Global Trends Briefing (GTB) data. The system has goals 1) to integrate the national R&D data obtained from NDSL and NTIS, 2) to provide a semantic & topic based information search on the integrated data, and 3) to provide a knowledge map services based on the semantic analysis and knowledge processing. The S&T information such as research papers, research reports, patents and GTB are daily updated from NDSL, and the R&D projects information including their participants and output information are updated from the NTIS. The S&T information and the national R&D information are obtained and integrated to the integrated database. Knowledge base is constructed by transforming the relational data into triples referencing R&D ontology. In addition, a topic modeling method is employed to extract the relationships between the S&T documents and topic keyword/s representing the documents. The topic modeling approach enables us to extract the relationships and topic keyword/s based on the semantics, not based on the simple keyword/s. Lastly, we show an experiment on the construction of the integrated knowledge base using the lightweight ontology and topic modeling, and the knowledge map services created based on the knowledge base are also introduced.