• 제목/요약/키워드: 2-dimensional gel electrophoresis

검색결과 216건 처리시간 0.035초

Protein Expression Analysis of Halobacillus dabanensis $D-8^T$ Subjected to Salt Shock

  • Feng De Qin;Zhang Bo;Lu Wei Dong;Yang Su Sheng
    • Journal of Microbiology
    • /
    • 제44권4호
    • /
    • pp.369-374
    • /
    • 2006
  • To investigate the mechanism of salt tolerance of gram-positive moderately halophilic bacteria, two-dimensional gel electrophoresis (2-D PAGE) was employed to achieve high resolution maps of proteins of Halobacillus dabanensis $D-8^T$. Approximately 700 spots of proteins were identified from these 2-D PAGE maps. The majority of these proteins had molecular weights between 17.5 and 66 kDa, and most of them were distributed between the isoelectric points (pI) 4.0 and 5.9. Some protein spots were distributed in the more acidic region of the 2-D gel (pI <4.0). This pattern indicated that a number of proteins in the strain $D-8^T$ are acidic. To understand the adaptation mechanisms of moderately halophilic bacteria in response to sudden environmental changes, differential protein profiles of this strain were investigated by 2-D PAGE and $Imagemaster^{TM}$ 2D Platinum software after the cells were subjected to salt shock of 1 to 25% salinity for 5 and 50 min. Analysis showed 59 proteins with an altered level of expression as the result of the exposure to salt shock. Eighteen proteins had increased expression, S proteins were induced, and the expression of 33 proteins was down-regulated. Eight of the up-regulated proteins were identified using MALDI-TOF/MS and MASCOT, and were similar to proteins involved in signal transduction, proteins participating in energy metabolism pathways and proteins involved in stress.

Fast visible dye staining of proteins in one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gels compatible with matrix-assisted laser desorption/ionization-mass spectrometry

  • Jin, Li-Tai;Hwang, Sun-Young;Yoo, Gyurng-Soo;Choi, Jung-Kap
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.147.2-147.2
    • /
    • 2003
  • A fast and matrix-assisted laser desorption/ionization-mass spectrometry compatible protein staining method in one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis is described. It is based on the counterion dye staining method that employs oppositely charged two dyes, Zincon and Ethyl Violet to form an ion-pair complex. It is safe to use since the methanol used previously in staining solution was replaced with ethanol, which is not toxic. The protocol including fixing, staining and quick washing steps can be completed in 1 to 1.5 h depending upon gel thickness. (omitted)

  • PDF

Comprehensive proteome analysis using quantitative proteomic technologies

  • Kamal, Abu Hena Mostafa;Choi, Jong-Soon;Cho, Yong-Gu;Kim, Hong-Sig;Song, Beom-Heon;Lee, Chul-Won;Woo, Sun-Hee
    • Journal of Plant Biotechnology
    • /
    • 제37권2호
    • /
    • pp.196-204
    • /
    • 2010
  • With the completion of genome sequencing of several organisms, attention has been focused to determine the function and functional network of proteins by proteome analysis. The recent techniques of proteomics have been advanced quickly so that the high-throughput and systematic analyses of cellular proteins are enabled in combination with bioinformatics tools. Furthermore, the development of proteomic techniques helps to elucidate the functions of proteins under stress or diseased condition, resulting in the discovery of biomarkers responsible for the biological stimuli. Ultimate goal of proteomics orients toward the entire proteome of life, subcellular localization, biochemical activities, and their regulation. Comprehensive analysis strategies of proteomics can be classified as three categories: (i) protein separation by 2-dimensional gel electrophoresis (2-DE) or liquid chromatography (LC), (ii) protein identification by either Edman sequencing or mass spectrometry (MS), and (iii) quanitation of proteome. Currently MS-based proteomics turns shiftly from qualitative proteome analysis by 2-DE or 2D-LC coupled with off-line matrix assisted laser desorption ionization (MALDI) and on-line electrospray ionization (ESI) MS, respectively, to quantitative proteome analysis. Some new techniques which include top-down mass spectrometry and tandem affinity purification have emerged. The in vitro quantitative proteomic techniques include differential gel electrophoresis with fluorescence dyes, protein-labeling tagging with isotope-coded affinity tag, and peptide-labeling tagging with isobaric tags for relative and absolute quantitation. In addition, stable isotope labeled amino acid can be in vivo labeled into live culture cells through metabolic incorporation. MS-based proteomics extends to detect the phosphopeptide mapping of biologically crucial protein known as one of post-translational modification. These complementary proteomic techniques contribute to not only the understanding of basic biological function but also the application to the applied sciences for industry.

Iron Starvation-Induced Proteomic Changes in Anabaena (Nostoc) sp. PCC 7120: Exploring Survival Strategy

  • Narayan, Om Prakash;Kumari, Nidhi;Rai, Lal Chand
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권2호
    • /
    • pp.136-146
    • /
    • 2011
  • This study provides first-hand proteomic data on the survival strategy of Anabaena sp. PCC 7120 when subjected to long-term iron-starvation conditions. 2D-gel electrophoresis followed by MALDI-TOF/MS analysis of iron-deficient Anabaena revealed significant and reproducible alterations in ten proteins, of which six are associated with photosynthesis and respiration, three with the antioxidative defense system, and the last, hypothetical protein all1861, conceivably connected with iron homeostasis. Iron-starved Anabaena registered a reduction in growth, photosynthetic pigments, PSI, PSII, whole-chain electron transport, carbon and nitrogen fixation, and ATP and NADPH content. The kinetics of hypothetical protein all1861 expression, with no change in expression until day 3, maximum expression on the $7^{th}$ day, and a decline in expression from the $15^{th}$ day onward, coupled with in silico analysis, suggested its role in iron sequestration and homeostasis. Interestingly, the up-regulated FBP-aldolase, Mn/Fe-SOD, and all1861 all appear to assist the survival of Anabeana subjected to iron-starvation conditions. Furthermore, the $N_2$-fixation capabilities of the iron-starved Anabaena encourage us to recommend its application as a biofertilizer, particularly in iron-limited paddy soils.

Effect of Uracil Addition of Proteomic Profiles and 1,3-Beta-Glucan Production in Agrobacterium sp.

  • Jin, Li-Hua;Lee, Jung-Heon
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2005년도 생물공학의 동향(XVII)
    • /
    • pp.674-679
    • /
    • 2005
  • With addition of uracil during fermentation, the production rate of $1,3-{\beta}-glucan(curdlan)$ was enhanced. Since uracil was used as precursor of UDP-Glucose, the UDP-glucose level was increased and further glucan synthesis rate was increased.

  • PDF

작물 단백질체 분석을 위한 이차원 전기영동 사용법 (Crop proteomics: Practical method for high resolution of two-dimensional electrophoresis)

  • 김유지;정화진;이수지;김선태
    • Journal of Plant Biotechnology
    • /
    • 제39권1호
    • /
    • pp.81-92
    • /
    • 2012
  • 단백질체학에서 이차원 전기영동 (2-DGE)은 고해상도 단백질 분리가 가능한 중요 기술 중 하나이다. 본 논문에서는 2-DGE 이미지 분석 일치도를 향상시킴으로써 작물 단백질 검출과 정량분석이 가능하도록 하는 전반적인 주요 장비, 시약 등을 자세히 기술한 프로토콜을 제시하고 있다. 이 프로토콜은 식물의 발달, 생물학적, 비생물학적 스트레스 반응 등과 관련된 작물 단백질 바이오마커를 개발하기 위한 목적에서 2-DGE를 처음 시도하는 연구자들에게 유용할 것으로 기대한다.

Stress Tolerance of Bifidobacterium infantis ATCC 27920 to Mild-heat Adaptation

  • Kang, Seok-U;Kim, Young-Hoon;Cho, In-Shick;Kang, Ja-Heon;Chun, Il-Byung;Kim, Kwang-Hyun;Oh, Se-Jong
    • Food Science and Biotechnology
    • /
    • 제18권1호
    • /
    • pp.249-252
    • /
    • 2009
  • Two-dimensional gel electrophoresis (2-DE) was employed to assess the thermo-tolerance characteristics of Bifrdobacterium infantis ATCC 27920 to mild heat adaptation. When exposed to various heat levels, pH, and hydrogen peroxide ($H_2O_2$) stress conditions, B. infantis ATCC 27920 exhibited high level of stress resistance. Under mild-heat treatment ($46^{\circ}C$), no significant change in viability level was observed after 2 hr. Interestingly, improved viability was observed in mild-heat adapted ($46^{\circ}C$ for 1 hr) cultures exposed to $55^{\circ}C$, in comparison to control experiments. Viability was not affected by pH, bile, and $H_2O_2$ stress conditions. 2-DE analysis revealed those mild-heat adaptation up-regulated 4 proteins and down-regulated 3 proteins. Among these protein spots, isopropyhnalate dehydratase (leuD), glycosyltransferase (glgA), and ribosomal protein L5 (rp1E) were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALD1-TOF/MS).

Preliminary Proteomic Analysis of Thiobacillus ferrooxidans Growing on Elemental Sulphur and Fe2+ Separately

  • He, Zhi-guo;Hu, Yue-Hua;Zhong, Hui;Hu, Wei-Xin;Xu, Jin
    • BMB Reports
    • /
    • 제38권3호
    • /
    • pp.307-313
    • /
    • 2005
  • Thiobacillus ferrooxidans is one of the most important bacterium used in bioleaching, and can utilize $Fe^{2+}$ or sulphide as energy source. Growth curves for Thiobacillus ferrooxidans have been tested, which show lag, logarithmic, stationary and aging phases as seen in other bacteria. The logarithmic phases were from 10 to 32 hours for Thiobacillus ferrooxidans cultivated with $Fe^{2+}$ and from 4 to 12 days for Thiobacillus ferrooxidans cultivated with elemental sulphur. Differences of protein patterns of Thiobacillus ferrooxidans growing on elemental sulphur and $Fe^{2+}$ separately were investigated after cultivation at $30^{\circ}C$ by the analysis of two-dimensional gel electrophoresis (2-DE), matrix-assisted laser desorption/ ionization (MALDI)-Mass spectrometry and ESI-MS/MS. From the 7 identified protein spots, 11 spots were found more abundant when growing on elemental sulphur. By contrast 6 protein spots were found decreased at elemental cultivation condition. Among the proteins identified, cytochrome C have been previously identified as necessary elements of electron-transfering pathway for Thiobacillus ferrooxidans to oxidize $Fe^{2+}$; ATP synthase alpha chain and beta are expressed increased when Thiobacillus ferrooxidans cultivated with $Fe^{2+}$ as energy source. ATP synthase Beta chain is the catalytic subunit, and ATP synthase alpha chain is a regulatory subunit. The function of ATPase produces ATP from ADP in the presence of a proton gradient across the membrane.

Genetic Algorithm과 다중부스팅 Classifier를 이용한 암진단 시스템 (Cancer Diagnosis System using Genetic Algorithm and Multi-boosting Classifier)

  • 온승엽;지승도
    • 한국시뮬레이션학회논문지
    • /
    • 제20권2호
    • /
    • pp.77-85
    • /
    • 2011
  • 생물 및 의학계에서는 생물정보학(bioinformatics)의 데이터 중 혈청 단백질(proteome)에서 추출한 데이터가 질병의 진단에 관련된 정보를 가지고 있고, 이 데이터를 분류 분석함으로 질병을 조기에 진단 할 수 있다고 믿고 있다. 본 논문에서는 혈청 단백질(2-D PAGE: Two-dimensional polyacrylamide gel electrophoresis)로부터 암과 정상을 판별하는 새로운 복합분류기를 제안한다. 새로운 복합 분류기에서는 support vector machine(SVM)와 다층 퍼셉트론(multi-layer perceptron: MLP)와 k-최근 접 이웃(k-nearest neighbor: k-NN)분류기를 앙상블(ensemble) 방법으로 통합하는 동시에 다중 부스팅(boosting) 방법으로 각 분류기를 확장하여 부분류기(subclassifier)의 배열(array)으로서 복합분류기를 구성하였다. 각 부분류기에서는 최적 특성 집합 (feature set)을 탐색하기 위하여 유전 알고리즘(genetic algorithm: GA)를 적용하였다. 복합분류기의 성능을 측정하기 위하여 암연구에서 얻어진 임상 데이터를 복합분류기에 적용하였고 결과로서 단일 분류기 보다 높은 분류 정확도와 안정성을 보여 주었다.

Proteomics Analysis of Gastric Epithelial AGS Cells Infected with Epstein-Barr Virus

  • Ding, Yong;Li, Xiao-Rong;Yang, Kai-Yan;Huang, Li-Hua;Hu, Gui;Gao, Kai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권1호
    • /
    • pp.367-372
    • /
    • 2013
  • Effects of the Epstein-Barr virus (EBV) on cellular protein expression are essential for viral pathogenesis. To characterize the cellular response to EBV infection, differential proteomes of gastric epithelial AGS cells were analyzed with two-dimensional gel electrophoresis (2-DE) followed by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) and liquid chromatography electrospray/ionization ion trap (LC-ESI-IT) mass spectrometry identification. Mass spectrometry identified 9 altered cellular proteins, including 5 up-regulated and 4 down-regulated proteins after EBV infection. Notably 2-DE analysis revealed that EBV infection induced increased expression of heat shock cognate 71 kDa protein, actin cytoplasmic 1, pyridoxine-5'-phosphate oxidase, caspase 9, and t-complex protein 1 subunit alpha. In addition, EBV infection considerably suppressed those cellular proteins of zinc finger protein 2, cyclin-dependent kinase 2, macrophage-capping protein, and growth/differentiation factor 11. Furthermore, the differential expressional levels of partial proteins (cyclin-dependent kinase 2 and caspase 9) were confirmed by Western blot analysis.Thus, this work effectively provided useful protein-related information to facilitate further investigation of the mechanisms underlying EBV infection and pathogenesis.