• Title/Summary/Keyword: 2-channel sensing

Search Result 234, Processing Time 0.026 seconds

Estimation of Precipitable Water from the GMS-5 Split Window Data (GMS-5 Split Window 자료를 이용한 가강수량 산출)

  • 손승희;정효상;김금란;이정환
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.1
    • /
    • pp.53-68
    • /
    • 1998
  • Observation of hydrometeors' behavior in the atmosphere is important to understand weather and climate. By conventional observations, we can get the distribution of water vapor at limited number of points on the earth. In this study, the precipitable water has been estimated from the split window channel data on GMS-5 based upon the technique developed by Chesters et al.(1983). To retrieve the precipitable water, water vapor absorption parameter depending on filter function of sensor has been derived using the regression analysis between the split window channel data and the radiosonde data observed at Osan, Pohang, Kwangiu and Cheju staions for 4 months. The air temperature of 700 hPa from the Global Spectral Model of Korea Meteorological Administration (GSM/KMA) has been used as mean air temperature for single layer radiation model. The retrieved precipitable water for the period from August 1996 through December 1996 are compared to radiosonde data. It is shown that the root mean square differences between radiosonde observations and the GMS-5 retrievals range from 0.65 g/$cm^2$ to 1.09 g/$cm^2$ with correlation coefficient of 0.46 on hourly basis. The monthly distribution of precipitable water from GMS-5 shows almost good representation in large scale. Precipitable water is produced 4 times a day at Korea Meteorological Administration in the form of grid point data with 0.5 degree lat./lon. resolution. The data can be used in the objective analysis for numerical weather prediction and to increase the accuracy of humidity analysis especially under clear sky condition. And also, the data is a useful complement to existing data set for climatological research. But it is necessary to get higher correlation between radiosonde observations and the GMS-5 retrievals for operational applications.

Sensitivity Analysis for CAS500-4 Atmospheric Correction Using Simulated Images and Suggestion of the Use of Geostationary Satellite-based Atmospheric Parameters (모의영상을 이용한 농림위성 대기보정의 주요 파라미터 민감도 분석 및 타위성 산출물 활용 가능성 제시)

  • Kang, Yoojin;Cho, Dongjin;Han, Daehyeon;Im, Jungho;Lim, Joongbin;Oh, Kum-hui;Kwon, Eonhye
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1029-1042
    • /
    • 2021
  • As part of the next-generation Compact Advanced Satellite 500 (CAS500) project, CAS500-4 is scheduled to be launched in 2025 focusing on the remote sensing of agriculture and forestry. To obtain quantitative information on vegetation from satellite images, it is necessary to acquire surface reflectance through atmospheric correction. Thus, it is essential to develop an atmospheric correction method suitable for CAS500-4. Since the absorption and scattering characteristics in the atmosphere vary depending on the wavelength, it is needed to analyze the sensitivity of atmospheric correction parameters such as aerosol optical depth (AOD) and water vapor (WV) considering the wavelengths of CAS500-4. In addition, as CAS500-4 has only five channels (blue, green, red, red edge, and near-infrared), making it difficult to directly calculate key parameters for atmospheric correction, external parameter data should be used. Therefore, thisstudy performed a sensitivity analysis of the key parameters (AOD, WV, and O3) using the simulated images based on Sentinel-2 satellite data, which has similar wavelength specifications to CAS500-4, and examined the possibility of using the products of GEO-KOMPSAT-2A (GK2A) as atmospheric parameters. The sensitivity analysisshowed that AOD wasthe most important parameter with greater sensitivity in visible channels than in the near-infrared region. In particular, since AOD change of 20% causes about a 100% error rate in the blue channel surface reflectance in forests, a highly reliable AOD is needed to obtain accurate surface reflectance. The atmospherically corrected surface reflectance based on the GK2A AOD and WV was compared with the Sentinel-2 L2A reflectance data through the separability index of the known land cover pixels. The result showed that two corrected surface reflectance had similar Seperability index (SI) values, the atmospheric corrected surface reflectance based on the GK2A AOD showed higher SI than the Sentinel-2 L2A reflectance data in short-wavelength channels. Thus, it is judged that the parameters provided by GK2A can be fully utilized for atmospheric correction of the CAS500-4. The research findings will provide a basis for atmospheric correction of the CAS500-4 in the future.

Design and Fabrication of CMOS Micro Humidity Sensor System (CMOS 마이크로 습도센서 시스템의 설계 및 제작)

  • Lee, Ji-Gong;Lee, Sang-Hoon;Lee, Sung-Pil
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.2
    • /
    • pp.146-153
    • /
    • 2008
  • Integrated humidity sensor system with two stages operational amplifier has been designed and fabricated by $0.8{\mu}m$ analog mixed CMOS technology. The system (28 pin and $2mm{\times}4mm$) consisted of Wheatstone-bridge type humidity sensor, resistive type humidity sensor, temperature sensors and operational amplifier for signal amplification and process in one chip. The poly-nitride etch stop process has been tried to form the sensing area as well as trench in a standard CMOS process. This modified technique did not affect the CMOS devices in their essential characteristics and gave an allowance to fabricate the system on same chip by standard process. The operational amplifier showed the stable operation so that unity gain bandwidth was more than 5.46 MHz and slew rate was more than 10 V/uS, respectively. The drain current of n-channel humidity sensitive field effect transistor (HUSFET) increased from 0.54 mA to 0.68 mA as the relative humidity increased from 10 to 70 %RH.

  • PDF

Microfabrication of the ISFET Cartridge by empolying Nozzle system (노즐의 원리를 도입한 ISFET 소형 카트리지 제작)

  • Kim, Hyun-Soo;Lee, Young-Chul;Kim, Young-Jin;Cho, Byung-Woog;Sohn, Byung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.320-326
    • /
    • 1999
  • A small cartridge, with a nozzle system for washing off the dirt from the surfaces of sensing gates, was fabricated. The proposed nozzle structure was designed for cartridge by using the simulation tool of fluid (CFD-ACE). Whole size of the fabricated cartridge by using micromachining techniques is about $2.6\;cm{\times}1.5\;cm$, the size of the washing nozzle is $0.2\;mm{\times}0.6\;mm$ and its dead volume is only about $20\;{\mu}l$. A micro-reference electrode was achieved by employing a differential system with ISFETs/QRE (quasi-reference electrode)/REFET (reference field-effect transistor). Metal electrodes was deposited at both ends of blowing channel were used to check the presence of bubble in the microchannel. The pH-ISFET was inserted into the fabricated cartridge and the washing effect of the nozzle system in cartridge was invested.

  • PDF

A Study on Electrooptic $Ti:LiNbO_3$ Mach-Zehnder integrated-optic interferometers for Electric-Field Measurement (전계측정용 전기광학 $Ti:LiNbO_3$ Mach-Zehnder 집적광학 간섭기에 관한 연구)

  • Jung, Hong-Sik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.12
    • /
    • pp.15-22
    • /
    • 2011
  • Integrated-optic symmetric/asymmetric Mach-Zehnder interferometers at $1.3{\mu}m$ wavelength were studied as sensing part for electric-field measurement system. The devices were simulated based on the BPM software and fabricated utilizing Ti-diffused $LiNbO_3$ channel optical waveguides and lumped-type electrodes. A half-wave voltage of $V_{\pi}$=6.6V and modulation depth of 100% and 75% for a symmetric structure were measured for 200Hz and 1kHz electrical signal bandwidth, respectively. By the way, almost half-maximum power transmission was observed for asymmetric interferometers with ${\pi}$/2 intrinsic phase difference. Expected experimental measurements were observed for 1kHz electrical signal bandwidth.

Implementation of Cognitive Radio System with Genetic Algorithm Using USRP 2 (유전자 알고리즘이 적용된 USRP 2를 이용한 인지무선 시스템 구현)

  • Yong, Seul-Ba-Ro;Jang, Sung-Jeen;Lee, In-Sun;Kim, Jae-Moung
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.1
    • /
    • pp.39-47
    • /
    • 2012
  • Currently, most of the frequency spectrum resources are allocated and due to the lack of frequency, low frequency band, optimal for wireless communication environment is not used. Therefore, Cognitive Radio (CR) is a critical issue to solve the spectrum scarcity and to improve frequency spectrum utilization in wireless communication. In this paper, we implement data transmission and receive in a real CR system using the USRP(Universal Software Radio Peripheral) board and GNU Radio package of an open source development kit. Concretely, we detect the Primary User by spectrum sensing, and then we send Primary User information to the database. After receiving the information, because the database already sent optimal transmit power, bandwidth and channel information to CR equipment, CR can communicate without any interference to Primary User.

Analysis of the Fog Detection Algorithm of DCD Method with SST and CALIPSO Data (SST와 CALIPSO 자료를 이용한 DCD 방법으로 정의된 안개화소 분석)

  • Shin, Daegeun;Park, Hyungmin;Kim, Jae Hwan
    • Atmosphere
    • /
    • v.23 no.4
    • /
    • pp.471-483
    • /
    • 2013
  • Nighttime sea fog detection from satellite is very hard due to limitation in using visible channels. Currently, most widely used method for the detection is the Dual Channel Difference (DCD) method based on Brightness Temperature Difference between 3.7 and 11 ${\mu}m$ channel (BTD). However, this method have difficulty in distinguishing between fog and low cloud, and sometimes misjudges middle/high cloud as well as clear scene as fog. Using CALIPSO Lidar Profile measurements, we have analyzed the intrinsic problems in detecting nighttime sea fog from various satellite remote sensing algorithms and suggested the direction for the improvement of the algorithm. From the comparison with CALIPSO measurements for May-July in 2011, the DCD method excessively overestimates foggy pixels (2542 pixels). Among them, only 524 pixel are real foggy pixels, but 331 pixels and 1687 pixels are clear and other type of clouds, respectively. The 514 of real foggy pixels accounts for 70% of 749 foggy pixels identified by CALIPSO. Our proposed new algorithm detects foggy pixels by comparing the difference between cloud top temperature and underneath sea surface temperature from assimilated data along with the DCD method. We have used two types of cloud top temperature, which obtained from 11 ${\mu}m$ brightness temperature (B_S1) and operational COMS algorithm (B_S2). The detected foggy 1794 pixels from B_S1 and 1490 pixel from B_S2 are significantly reduced the overestimation detected by the DCD method. However, 477 and 446 pixels have been found to be real foggy pixels, 329 and 264 pixels be clear, and 989 and 780 pixels be other type of clouds, detected by B_S1 and B_S2 respectively. The analysis of the operational COMS fog detection algorithm reveals that the cloud screening process was strictly enforced, which resulted in underestimation of foggy pixel. The 538 of total detected foggy pixels obtain only 187 of real foggy pixels, but 61 of clear pixels and 290 of other type clouds. Our analysis suggests that there is no winner for nighttime sea fog detection algorithms, but loser because real foggy pixels are less than 30% among the foggy pixels declared by all algorithms. This overwhelming evidence reveals that current nighttime sea fog algorithms have provided a lot of misjudged information, which are mostly originated from difficulty in distinguishing between clear and cloudy scene as well as fog and other type clouds. Therefore, in-depth researches are urgently required to reduce the enormous error in nighttime sea fog detection from satellite.

Analysis of Relationships between Features Extracted from SAR Data and Land-cover Classes (SAR 자료에서 추출한 특징들과 토지 피복 항목 사이의 연관성 분석)

  • Park, No-Wook;Chi, Kwang-Hoon;Lee, Hoon-Yol
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.4
    • /
    • pp.257-272
    • /
    • 2007
  • This paper analyzed relationships between various features from SAR data with multiple acquisition dates and mode (frequency, polarization and incidence angles), and land-cover classes. Two typical types of features were extracted by considering acquisition conditions of currently available SAR data. First, coherence, temporal variability and principal component transform-based features were extracted from multi-temporal and single mode SAR data. C-band ERS-1/2, ENVISAT ASAR and Radarsat-1, and L-band JERS-1 SAR data were used for those features and different characteristics of different SAR sensor data were discussed in terms of land-cover discrimination capability. Overall, tandem coherence showed the best discrimination capability among various features. Long-term coherence from C-band SAR data provided a useful information on the discrimination of urban areas from other classes. Paddy fields showed the highest temporal variability values in all SAR sensor data. Features from principal component transform contained particular information relevant to specific land-cover class. As features for multiple mode SAR data acquired at similar dates, polarization ratio and multi-channel variability were also considered. VH/VV polarization ratio was a useful feature for the discrimination of forest and dry fields in which the distributions of coherence and temporal variability were significantly overlapped. It would be expected that the case study results could be useful information on improvement of classification accuracy in land-cover classification with SAR data, provided that the main findings of this paper would be confirmed by extensive case studies based on multi-temporal SAR data with various modes and ground-based SAR experiments.

Detection for Region of Volcanic Ash Fall Deposits Using NIR Channels of the GOCI (GOCI 근적외선 채널을 활용한 화산재 퇴적지역 탐지)

  • Sun, Jongsun;Lee, Won-Jin;Park, Sun-Cheon;Lee, Duk Kee
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_4
    • /
    • pp.1519-1529
    • /
    • 2018
  • The volcanic ash can spread out over hundreds of kilometers in case of large volcanic eruption. The deposition of volcanic ash may induce damages in urban area and transportation facilities. In order to respond volcanic hazard, it is necessary to estimate efficiently the diffusion area of volcanic ash. The purpose of this study is to compare in-situ volcanic deposition and satellite images of the volcanic eruption case. In this study, we used Near-Infrared (NIR) channels 7 and 8 of Geostationary Ocean Color Imager (GOCI) images for Mt. Aso eruption in 16:40 (UTC) on October 7, 2016. To estimate deposit area clearly, we applied Principal Component Analysis (PCA) and a series of morphology filtering (Eroded, Opening, Dilation, and Closing), respectively. In addition, we compared the field data from the Japan Meteorological Agency (JMA) report about Aso volcano eruption in 2016. From the results, we could extract volcanic ash deposition area of about $380km^2$. In the traditional method, ash deposition area was estimated by human activity such as direct measurement and hearsay evidence, which are inefficient and time consuming effort. Our results inferred that satellite imagery is one of the powerful tools for surface change mapping in case of large volcanic eruption.

Experiment of KOMPSAT-3/3A Absolute Radiometric Calibration Coefficients Estimation Using FLARE Target (FLARE 타겟을 이용한 다목적위성3호/3A호의 절대복사 검보정 계수 산출)

  • Kyoungwook Jin;Dae-Soon Park
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1389-1399
    • /
    • 2023
  • KOMPSAT-3/3A (K3/K3A) absolute radiometric calibration study was conducted based on a Field Line of sight Automated Radiance Exposure (FLARE) system. FLARE is a system, which has been developed by Labsphere, Inc. adopted a SPecular Array Radiometric Calibration (SPARC) concept. The FLARE utilizes a specular mirror target resulting in a simplified radiometric calibration method by minimizing other sources of diffusive radiative energies. Several targeted measurements of K3/3A satellites over a FLARE site were acquired during a field campaign period (July 5-15, 2021). Due to bad weather situations, only two observations of K3 were identified as effective samples and they were employed for the study. Absolute radiometric calibration coefficients were computed using combined information from the FLARE and K3 satellite measurements. Comparison between the two FLARE measurements (taken on 7/7 and 7/13) showed very consistent results (less than 1% difference between them except the NIR channel). When additional data sets of K3/K3A taken on Aug 2021 were also analyzed and compared with gain coefficients from the metadata which are used by current K3/K3A, It showed a large discrepancy. It is assumed that more studies are needed to verify usefulness of the FLARE system for the K3/3A absolute radiometric calibration.