• Title/Summary/Keyword: 2-arch tunnel

Search Result 82, Processing Time 0.02 seconds

A Numerical Study on the Reinforcement Method of a Pillar Using Tension Bolts at the Connecting Part between 2-Arch Tunnels and Parallel Tunnels (2-Arch 터널과 병렬 터널 접속부에서의 텐션볼트를 사용한 필라 보강 방법에 대한 수치해석)

  • Park, Yeon-Jun;Choi, Jae-Jin
    • Tunnel and Underground Space
    • /
    • v.25 no.5
    • /
    • pp.470-486
    • /
    • 2015
  • Two-arch tunnels require minimal spacing between the 2 tunnels and thus occupy small amount of land compared to parallel tunnels. But it is rather expensive. The parallel tunnel is not as expensive, but it requires more land than 2-arch tunnels. This may cause a problem when there is a land shortage. The new design is to connect these two types of tunnels by another pair of parallel tunnels where the separation distance is gradually increasing. The applicability of this new design to the cases where rock condition is not even fair has to be verified since the width of the pillar between the connecting tunnels can be quite narrow. Therefore both two and three dimensional numerical analyses were conducted and pillar stability was examined for rock classes IV and V in two different ways. Results showed that this new design is still effective for poor rock conditions if central pillar is properly reinforced by tension bolts as long as overburden is less than five times of the tunnel diameter.

Stability Analysis for Two Arch Excavation of a Tunnel Portal (터널 갱구 2 Arch 굴착에 따른 안정성 해석)

  • 이길재;유광호;박연준;채영수
    • Tunnel and Underground Space
    • /
    • v.12 no.3
    • /
    • pp.179-188
    • /
    • 2002
  • This study is to understand the effect of the vibration and the stress changes due to the excavation of 2 arch parts of a tunnel, which is a Gyungbu Express Railway tunnel, on the tunnel itself and adjacent slopes in advance, and to analyze the stability. For the estimation of ground conditions, borehole tests, borehole camera logging and seismic logging were performed. Ground properties at a specific location were determined as input constants by performing 2 dimensional analyses with possible ranges of uncertain ground properties. Static and pseudo-static (due to blasting vibration) factors of safety were calculated. The behavior of the tunnel and its vicinity due to the tunnel excavation were predicted by 3 dimensional analyses. It was also tested whether the support system was proper.

A design case study of the very wide 3-arch tunnel under Daejeon railroad station building (I) (대전역사 하부통과 3-arch 터널의 설계사례 연구 (I))

  • Chang, Seok-Bue;Moon, Sang-Jo;Kwon, Seung;Huh, Do-Hak;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.3
    • /
    • pp.247-260
    • /
    • 2002
  • This paper presents the design case of the 3-arch tunnel under Daejeon railroad station building. The original construction method was the underpinning method supported by pipe-roof, but it was changed to the mined tunnelling method because of the complex construction condition and the safety problem. This 3-arch tunnel has a width of 28 meters and a height of 10 meters. Overburden is only 23m and the ground around the tunnel is a weathered rock. The allowable settlements for the station building and some railroads are very strict. Accordingly, various measurements for the tunnel stability and the settlement minimization was applied and they were reviewed by 2-D and 3-D numerical analysis.

  • PDF

A Evaluation of Standard Support Pattern for Two-Arch Road Tunnel (2-Arch 도로터널에 적용된 표준지보패턴의 적정성 검토)

  • Chun, Byungsik;Choi, Kwangbo;Kim, Hyeyang;Yoo, Junhee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.7
    • /
    • pp.25-35
    • /
    • 2008
  • In domestic cases, the standard support pattern of 2-lanes road tunnels is presented because construction experience and high degree various data was abundant. But, it is not desirable to apply standard for 2-Arch tunnels that the precedent and measuring data is insufficient existing support pattern blasting plan and interpretation of separate way concerning specific terrain and rock quality. In this study, behavior according to load distribution ratio and Unsymmetrical Pressure about standard support pattern which is applied in design and construction of 2-arch tunnels was analysed and the examination of blasting vibration has influence on the center wall is conducted as a consequence reasonableness of support whether or not with presumed support pressure and ground reaction curve method. In result appropriateness of standard support pattern, support quantity is proper but considers specific terrain and rock quality condition when design and construction of further step 2-arch tunnel standard support pattern must be decided by considering terrains, soil properties and construction condition of the objective tunnel.

  • PDF

Study on bearing capacity of combined confined concrete arch in large-section tunnel

  • Jiang Bei;Xu Shuo;Wang Qi;Xin Zhong Xin;Wei Hua Yong;Ma Feng Lin
    • Steel and Composite Structures
    • /
    • v.51 no.2
    • /
    • pp.117-126
    • /
    • 2024
  • There are many challenges in the construction of large-section tunnels, such as extremely soft rock and fractured zones. In order to solve these problems, the confined concrete support technology is proposed to control the surrounding rocks. The large-scale laboratory test is carried out to clarify mechanical behaviours of the combined confined concrete and traditional I-steel arches. The test results show that the bearing capacity of combined confined concrete arch is 3217.5 kN, which is 3.12 times that of the combined I-steel arch. The optimum design method is proposed to select reasonable design parameters for confined concrete arch. The parametric finite element (FE) analysis is carried out to study the effect of the design factors via optimum design method. The steel pipe wall thickness and the longitudinal connection ring spacing have a significant effect on the bearing capacity of the combined confined concrete arch. Based on the above research, the confined concrete support technology is applied on site. The field monitoring results shows that the arch has an excellent control effect on the surrounding rock deformation. The results of this research provide a reference for the support design of surrounding rocks in large-section tunnels.

A Case Study on the Design and Construction of a 2-arch Tunnel with Varying Section (2-아치 변단면터널의 설계 및 시공사례 연구)

  • Choi, Jae-Jin;Park, Yeon-Jun;Kim, Si-Keun;Park, Jae-Hyun
    • Tunnel and Underground Space
    • /
    • v.22 no.5
    • /
    • pp.310-320
    • /
    • 2012
  • This paper describes the design and construction of a 2-arch tunnel with varying section. This new design has advantages of 2-arch tunnels, which is rather expensive, but is still economically competitive compared to parallel tunnels. Economic analysis was also conducted. To secure the stability of the varying section tunnel, excavated part was reinforced by tie-bolts and RRS, and 2-arch part was supported by EPS blocks and concrete walls. Stability of the pillar was theoretically analyzed and also examined by numerical simulations for various widths. Displacement monitoring was conducted and results were compared with numerical results. Economic analysis showed reductions in construction cost and period by 11% and 10 months respectively.

A Study on the Excavation of the Center Wall for the Evacuation Passageway in the Operating 2-Arch Tunnel (운행 중인 2-Arch 터널의 피난연결통로 신설을 위한 중앙벽체 굴착에 관한 연구)

  • Lee, Jong-Hyun
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.3
    • /
    • pp.454-464
    • /
    • 2021
  • Purpose: There is a need to construct an evacuation passageway for the 2-Arch tunnel, which has been constructed and is in operation. Therefore, it aims to analyze tunnel and center wall behaviour and stability due to excavation of the center wall. Method: We describe the theoretical background of 2-Arch tunnel and evacuation passageway, and focused on analyzing the behaviour of tunnel and wall using 3-dimensional finite element analysis. Parametric analysis according to rock rating was performed with various ground conditions, and the displacement and stress of the center wall were intensively analyzed. Result: With the center wall excavation, the largest amount of settlement was shown in the center of the opening, and the stress was greatest during the first excavation. In addition, it was shown that stress concentration occurred at the top of both openings, and stability reviews considering the concept of allowable stress showed that it exceeded the allowable stress. Conclusion: Although the displacement of the tunnel has secured stability within the allowable standard, the generated stress is found to exceed the allowable standard, so it is necessary to prevent sudden stress release by applying appropriate reinforcement methods during construction.

Analysis of cause and deterioration about using 3-Arch tunnel (공용중인 3-Arch터널의 열화조사 및 원인분석)

  • Lee, Yu-Seok;Park, Sung-Woo;Whang, In-Baek;Shin, Yong-Suk;Kim, Sun-Gon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.1
    • /
    • pp.97-105
    • /
    • 2009
  • This paper studied the cause of the deterioration of the four 3-Arch tunnels built in mid-1990. The common deteriorations of the four 3-Arch tunnels were longitudinal cracks, leakage and efflorescence at the same parts of lining concrete. Three fourths of 3-Arch tunnels, there was high percentage longitudinal cracks and a quarter was low frequency about longitudinal cracks. So the material reviewed to find out the differences between two groups in construction process and analysis was conducted such as non-destructive testing, precise visual survey and safety evaluation of one tunnel which had bad ground condition As the result, the tunnels were safety condition and the primary deterioration occurred during the construction process, namely, problems arrangement of rebar and the effects of the blast at middle tunnel.

A Study on the Evaluation of the Loads Acting on the Pillar in Two-Arch Tunnel (2-Arch 터널 중앙벽체 작용하중 산정에 관한 연구)

  • Oh, Gyoo-Chul;Chun, Byung-Sik;Do, Jong-Nam
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.11
    • /
    • pp.5-14
    • /
    • 2007
  • In this study, Matsuda formula used to evaluate the loads acting on the pillar was investigated and load reduction factor(${\alpha}$) was evaluated by numerical analysis to better apply for the design. From the results, normal stress was concentrated to one side due to excavation of preceding tunnel after construction of pillar. And 86.5% of maximum normal stress was revealed partly unequally when the ground was poor. By numerical analysis, $14{\sim}83%$ of total loads calculated by Matsuda formula decreased and then, from these results, load reduction factor(${\alpha}$) was estimated. From now on, stability and economic aspects could be guaranteed by applying the load reduction factor(${\alpha}$).