• Title/Summary/Keyword: 2-absorbing submodule

Search Result 5, Processing Time 0.022 seconds

On Weakly Prime and Weakly 2-absorbing Modules over Noncommutative Rings

  • Groenewald, Nico J.
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.1
    • /
    • pp.33-48
    • /
    • 2021
  • Most of the research on weakly prime and weakly 2-absorbing modules is for modules over commutative rings. Only scatterd results about these notions with regard to non-commutative rings are available. The motivation of this paper is to show that many results for the commutative case also hold in the non-commutative case. Let R be a non-commutative ring with identity. We define the notions of a weakly prime and a weakly 2-absorbing submodules of R and show that in the case that R commutative, the definition of a weakly 2-absorbing submodule coincides with the original definition of A. Darani and F. Soheilnia. We give an example to show that in general these two notions are different. The notion of a weakly m-system is introduced and the weakly prime radical is characterized interms of weakly m-systems. Many properties of weakly prime submodules and weakly 2-absorbing submodules are proved which are similar to the results for commutative rings. Amongst these results we show that for a proper submodule Ni of an Ri-module Mi, for i = 1, 2, if N1 × N2 is a weakly 2-absorbing submodule of M1 × M2, then Ni is a weakly 2-absorbing submodule of Mi for i = 1, 2

ON WEAKLY 2-ABSORBING PRIMARY SUBMODULES OF MODULES OVER COMMUTATIVE RINGS

  • Darani, Ahmad Yousefian;Soheilnia, Fatemeh;Tekir, Unsal;Ulucak, Gulsen
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.5
    • /
    • pp.1505-1519
    • /
    • 2017
  • Assume that M is an R-module where R is a commutative ring. A proper submodule N of M is called a weakly 2-absorbing primary submodule of M if $0{\neq}abm{\in}N$ for any $a,b{\in}R$ and $m{\in}M$, then $ab{\in}(N:M)$ or $am{\in}M-rad(N)$ or $bm{\in}M-rad(N)$. In this paper, we extended the concept of weakly 2-absorbing primary ideals of commutative rings to weakly 2-absorbing primary submodules of modules. Among many results, we show that if N is a weakly 2-absorbing primary submodule of M and it satisfies certain condition $0{\neq}I_1I_2K{\subseteq}N$ for some ideals $I_1$, $I_2$ of R and submodule K of M, then $I_1I_2{\subseteq}(N:M)$ or $I_1K{\subseteq}M-rad(N)$ or $I_2K{\subseteq}M-rad(N)$.

ON THE 2-ABSORBING SUBMODULES AND ZERO-DIVISOR GRAPH OF EQUIVALENCE CLASSES OF ZERO DIVISORS

  • Shiroyeh Payrovi;Yasaman Sadatrasul
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.39-46
    • /
    • 2023
  • Let R be a commutative ring, M be a Noetherian R-module, and N a 2-absorbing submodule of M such that r(N :R M) = 𝖕 is a prime ideal of R. The main result of the paper states that if N = Q1 ∩ ⋯ ∩ Qn with r(Qi :R M) = 𝖕i, for i = 1, . . . , n, is a minimal primary decomposition of N, then the following statements are true. (i) 𝖕 = 𝖕k for some 1 ≤ k ≤ n. (ii) For each j = 1, . . . , n there exists mj ∈ M such that 𝖕j = (N :R mj). (iii) For each i, j = 1, . . . , n either 𝖕i ⊆ 𝖕j or 𝖕j ⊆ 𝖕i. Let ΓE(M) denote the zero-divisor graph of equivalence classes of zero divisors of M. It is shown that {Q1∩ ⋯ ∩Qn-1, Q1∩ ⋯ ∩Qn-2, . . . , Q1} is an independent subset of V (ΓE(M)), whenever the zero submodule of M is a 2-absorbing submodule and Q1 ∩ ⋯ ∩ Qn = 0 is its minimal primary decomposition. Furthermore, it is proved that ΓE(M)[(0 :R M)], the induced subgraph of ΓE(M) by (0 :R M), is complete.

Weakly Classical Prime Submodules

  • Mostafanasab, Hojjat;Tekir, Unsal;Oral, Kursat Hakan
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.4
    • /
    • pp.1085-1101
    • /
    • 2016
  • In this paper, all rings are commutative with nonzero identity. Let M be an R-module. A proper submodule N of M is called a classical prime submodule, if for each $m{\in}M$ and elements a, $b{\in}R$, $abm{\in}N$ implies that $am{\in}N$ or $bm{\in}N$. We introduce the concept of "weakly classical prime submodules" and we will show that this class of submodules enjoys many properties of weakly 2-absorbing ideals of commutative rings. A proper submodule N of M is a weakly classical prime submodule if whenever $a,b{\in}R$ and $m{\in}M$ with $0{\neq}abm{\in}N$, then $am{\in}N$ or $bm{\in}N$.