• Title/Summary/Keyword: 2-HEMA

Search Result 179, Processing Time 0.023 seconds

In situ synthesis of acrylic emulsion for improvement of anti corrosion property on steel plate (금속 코팅용 아크릴 올리고머 에멀젼의 합성에 관한 연구)

  • Lee, Soo;Park, Keun-Ho;Jin, Seok-Hwan;Park, Shin-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.485-494
    • /
    • 2008
  • The acrylic coating emulsions were prepared by the emulsion polymerization to protect the surface of steel plate from the corrosion chemicals like acid, base and salt water. MMA(methyl methacrylate), styrene, BA(butyl acrylate), and 2-HEMA(2-hydroxyethyl methacrylate) were used as monomer. KPS(potassium persulfate) and SBS(sodium bisulfite) as redox initiator and SDBS(sodium dodecylbenzene sulfonate) as emulsifier were used on the emulsion polymerization reaction. The most stable in-situ coating was obtained when 10% of MMA was added. Both particle size and quantity in emulsion were decreased as increasing the mount of SDBS. the most stable prepared coating emulsion with polyisocyanate crosslinker showed very high anticorrosion properties on the coated steel layer to salt water, whereas no significant improvement of anticorrosion property to acdic and basic condition it showed.

A Study on the Preparation and Hydrophilization of Polypropylene Microfiltration Membrane by Radiation-Induced Graft Polymerization (방사선 중합에 의한 폴리프로필렌 정밀여과막의 제조 및 친수화 거동에 관한 연구)

  • 황택성;이선아;황의환
    • Polymer(Korea)
    • /
    • v.24 no.5
    • /
    • pp.621-628
    • /
    • 2000
  • Microporous polypropylene (PP) membranes have the high chemical and corrosion resistance, the good mechanical properties and the thermal stability under high temperatures, but its application is restricted within narrow limits due to hydrophobicity of membranes. In order to impart permanent hydrophilicity to the PP microfiltration membrane, the radiation-induced graft of 2-hydroxyethyl methacrylate (HEMA) and acrylic acid (AAc) containing hydrophilic functional group onto the membrane has been studied. The effect of graft conditions such as reaction time, total radiation dose, reaction temperatures, acid compositions on graft yield was investigated. Modified PP membranes were shown to cause an increase in the gas flux. Oil emulsion permeation flux of both original PP membrane and modified PP membrane was examined.

  • PDF

SHEAR BOND STRENGTH OF LUTING CEMENTS TO DENTIN TREATED WITH RESIN BONDING AGENTS (레진접착제를 도포한 상아질에 대한 합착용 시멘트의 전단결합강도)

  • Kim, Kyo-Chul;Choi, Boo-Byung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.36 no.1
    • /
    • pp.26-49
    • /
    • 1998
  • The purpose of this study was to confirm the formation of hybrid layer and resin tags in dentin tissue and the possibility of bonding between luting cements used for the prosthesis and the resinous surface coated with resin bonding agents to prevent the dentin hypersensitivity after abutment preparation. Some resin bonding agents, which may have the possibility of bonding with polyacrylic acid as a liquid ingredient of polycarboxylate and glass ionomer cements, were selected. All-Blond desensitizer containing NTG-GMA and BPDM, Scotch-Bond Multipurpose plus containing HEMA, and XR-bond containing organophosphate were selected as a coating agent. Dental cements were zinc phosphate, polycarboxylate, and glass ionomer cement. After the exposed dentin surface of premolars was ethced with 10% phosphoric acid and coated with resin bonding agents, the morphology of treated surfaces and the resin tags and hybrid layers on sectioned surfaces were observed by SEM. Shear bond strength between the resin bonding agents and 3 kinds of cements was measured 24 hours after bonding. On the debonded surfaces of the shear bond strength tested specimens, the cement tags and the bonding sites between the resin materials and cements were examined by SEM. Following conclusions were drawn : 1. Coating of dentin with resin bonding agents had no effect on the shear bond strength of zinc phosphate cement. 2. Both of polycarboxylate and glass ionomer cements showed the increased shear bond strength by the dentinal coating with Scotch-Bond Multipurpose plus containing HEMA. However, in the case of dentinal coating with some agents containing NTG-GMA and BPDM or organophosphate, polycarboxylate cement exhibited the lowered shear bond strength, and glass ionomer cement showed the unchanged shear bond strength. 3. Complete obstructions of dentinal tubules were observed on the dentin coated with All-Bond desensitizer or XR-bond, but distinct shape of the orifices of dentinal tubules was observed consistently on the dentin coated with Scotch-Bond Multipurpose plus. 4. The hybrid layer was thickest on the dentin coated with All-Bond desensitizer, and the length of resin tags was longest on the dentin coated with Scotch-Bond Multipurpose plus. 3. On the debonded specimens which had been bonded with polycarboxylate cement or glass ionomer cement after coating with Scotch-Bond Multipurpose plus, the cement tags and the bonding sites between the resinous surface and the cements could be examined.

  • PDF

Study on the Preparation and Characterization of Ophthalmic Polymer with High and Low-Water Content

  • Lee, Min-Jae;Sung, A-Young
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.6
    • /
    • pp.346-351
    • /
    • 2017
  • This study was planned considering the chain length, hydrophilicity, and hydrophobicity of the additives to be used in the polymerization, while various ophthalmic lenses that use various additives with similar water contents were manufactured before their optical and physical properties were compared and analyzed. With regard to the additives required for manufacturing high-, medium-, and low-water content lens groups, HEA (hydroxyethyl acrylate), PVP (polyvinylpyrrolidone), and NMV(N-methyl-N-vinylacetamide) were used as additives for preparing the high-water content lens group, HEMA(2-hydroxyethyl methacrylate), HPMA(hydroxypropyl methacrylate) and BD(1,4-butanediol) were used for the medium-water content lens group. For the low-water content lens group, BMA(buthyl methacrylate), BDDA(1,4-butanediol diacrylate), and Bis-GMA(bisphenol A glycerolate diacrylate) were used, respectively. The average water content of HEA was 40.14%; that of PVP, 39.63%; and that of NMV, 40.52%. The mean of water content was 35.92% for HEMA, 35.74% for BD, and 34.62% for HPMA. For the low-water content lens group, the mean of water content was 26.69% for BMA, 27.76% for BDDA, and 26.14% for Bis-GMA. With regard to the results of the water content measurement using a moisture analyzer, the average water content of the high-water content lens group was 41.34% for HEA, 42.62% for PVP, and 42.73% for NMV. Finally, for the low-water content lens group, the average water content was 28.62% for BMA, 28.82% for BDDA, and 28.32% for Bis-GMA. The measurements of the water contents of the lenses using the two methods showed that the water content and refractive index of the lenses were similar in all the lens groups. The measurements of the contact angles, however, showed a different wettability value for each lens with a similar water content. Also, the change tendency of the lens curvature according to the change of time showed that the change amount became larger and the recovery time became longer from the lens samples with a lower water content to those with a higher water content. Based on these results that will be helpful for the study of ophthalmic lenses.

Effect of moisture and drying time on the bond strength of the one-step self-etching adhesive system

  • Lee, Yoon;Park, Jeong-Won
    • Restorative Dentistry and Endodontics
    • /
    • v.37 no.3
    • /
    • pp.155-159
    • /
    • 2012
  • Objectives: To investigate the effect of dentin moisture degree and air-drying time on dentin-bond strength of two different one-step self-etching adhesive systems. Materials and Methods: Twenty-four human third molars were used for microtensile bond strength testing of G-Bond and Clearfil $S^3$ Bond. The dentin surface was either blot-dried or air-dried before applying these adhesive agents. After application of the adhesive agent, three different air drying times were evaluated: 1, 5, and 10 sec. Composite resin was build up to 4 mm thickness and light cured for 40 sec with 2 separate layers. Then the tooth was sectioned and trimmed to measure the microtensile bond strength using a universal testing machine. The measured bond strengths were analyzed with three-way ANOVA and regression analysis was done (p = 0.05). Results: All three factors, materials, dentin wetness and air drying time, showed significant effect on the microtensile bond strength. Clearfil $S^3$ Bond, dry dentin surface and 10 sec air drying time showed higher bond strength. Conclusions: Within the limitation of this experiment, air drying time after the application of the one-step self-etching adhesive agent was the most significant factor affecting the bond strength, followed by the material difference and dentin moisture before applying the adhesive agent.

Fungicide Sensitivity among Isolates of Colletotrichum truncatum and Fusarium incarnatum-equiseti Species Complex Infecting Bell Pepper in Trinidad

  • Ramdial, Hema;Abreu, Kathryn De;Rampersad, Sephra N.
    • The Plant Pathology Journal
    • /
    • v.33 no.2
    • /
    • pp.118-124
    • /
    • 2017
  • Bell pepper is an economically important crop worldwide; however, production is restricted by a number of fungal diseases that cause significant yield loss. Chemical control is the most common approach adopted by growers to manage a number of these diseases. Monitoring for the development to resistance to fungicides in pathogenic fungal populations is central to devising integrated pest management strategies. Two fungal species, Fusarium incarnatum-equiseti species complex (FIESC) and Colletotrichum truncatum are important pathogens of bell pepper in Trinidad. This study was carried out to determine the sensitivity of 71 isolates belonging to these two fungal species to fungicides with different modes of action based on in vitro bioassays. There was no significant difference in log effective concentration required to achieve 50% colony growth inhibition ($LogEC_{50}$) values when field location and fungicide were considered for each species separately based on ANOVA analyses. However, the $LogEC_{50}$ value for the Aranguez-Antracol locationfungicide combination was almost twice the value for the Maloney/Macoya-Antracol location-fungicide combination regardless of fungal species. $LogEC_{50}$ values for Benomyl fungicide was also higher for C. truncatum isolates than for FIESC isolates and for any other fungicide. Cropping practices in these locations may explain the fungicide sensitivity data obtained.

Ophthalmic Application of Hydrogel Polymer Containing Carbon Nanomaterials

  • Seok, Jae-Wuk;Geum, Yong-Pil;Shin, Dong-Seok;Sung, A-Young
    • Journal of Integrative Natural Science
    • /
    • v.12 no.4
    • /
    • pp.116-121
    • /
    • 2019
  • This experiment is to evaluate the physical properties of the hydrogel lens with the addition of carbon-based nanomaterials, Graphene oxide and Carbon nanotube, and to confirm the improvement of strength. Hyaluronic acid, a hydrophilic substance, was used as an additive by using HEMA (2-hydroxyethyl methacrylate) and ethylene glycol dimethacrylate (EGDMA) as a base monomers. Graphene oxide and two types of Carbon nanotubes(Amide functionalized and Carboxilic acid functionalized) were added 0.1%, 0.3%, 0.5%, respectively, and the physical properties were analyzed by measuring water content, refractive index, breaking strength and SEM image. In the case of the sample added with each carbon nano material, the water content tended to increase for all three materials. The breaking strength tended to increase in Graphene oxide and Carbon nanotube; Carboxilic acid functionalized, but in the case of Carbon nanotube; amide fuctionalized, the breaking strength tended to decrease. However, Carbon nanotube; amide fuctionalized had the highest breaking strength among the three nano materials. Thus, the addition of certain carbon nanomaterials seems to be appropriate for improving the strength of hydrogel lenses.

Manufacture and Analysis of Ophthalmic Polymers including Gold Nanoparticles with Surface Modification Method

  • Seon-Young Park;Su-Mi Shin;A-Young Sung
    • Korean Journal of Materials Research
    • /
    • v.34 no.4
    • /
    • pp.194-201
    • /
    • 2024
  • In this study, the surfaces of two gold nanoparticles of different shapes were modified with hexadecyltrimethylammonium bromide (CTAB) and used for contact lenses. The polymer was based on 2-hydroxyethyl methacrylate (HEMA), and spherical and sea urchin-shaped gold nanoparticles were used as additives. CTAB was used to modify the surface of the sea urchin-shaped gold nanoparticles. To analyze the physical properties of the prepared contact lens, optical transmittance, refractive index, water content, contact angle, and atomic force microscope (AFM) were measured and evaluated. The results showed the nanoparticles did not significantly affect optical transmittance, refractive index, or water content of the lens, and tensile strength increased according to the ratio of the additive. The addition of the sea urchin-shaped nanoparticles resulted in lower wettability compared with the spherical nanoparticles, but somewhat superior tensile strength. In addition, it was found that the wettability of the lens was improved when the surface-modified sea urchin-shaped gold nanoparticles were added. The types of gold nanoparticles and surface modification methods used in this study are considered to have great potential for use in ophthalmic materials.

Fabrication of CO2 Sensor Membrane by Photolithographic Method (사진식각법을 이용한 CO2 센서 감지막의 제조)

  • Park, Lee Soon;Kim, Sang Tae;Koh, Kwang-Nak
    • Applied Chemistry for Engineering
    • /
    • v.9 no.1
    • /
    • pp.6-12
    • /
    • 1998
  • A FET(Field Effect Transistor) type dissolved $CO_2$ sensor based on Severinghaus type $CO_2$ sensor was fabricated by the photolithographic process. The sensor consists of Ag/AgCl reference electrode and membranes (hydrogel membrane and $CO_2$ gas permeable membrane) on the pH-ISFET base chip. Ag/AgCl reference electrode was fabricated as follows. Ag layer was thermally evaporated and then its upper surface was chemically chloridized into the AgCl. The hydrogel used as an internal electrolyte solution was fabricated by a photolithographic method using 2-hydroxyethyl methacrylate(HEMA) and acrylamide. $CO_2$ permeable membrane on the top of the hydrogel layer was formed by photolithographic process with UV-oligomer. The FET type $pCO_2$ sensor fabricated by photolithographic method showed good linearity within the concentration range of $10^{-3}{\sim}10^0mole/{\ell}$ of dissolved $CO_2$ in aqueous solution with high sensitivity.

  • PDF

Polymerization and Optical Properties of Polymers with High Tensile Strength Added Isocyanate Group

  • Sung, A-Young;Ye, Ki-Hun
    • Journal of Integrative Natural Science
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • Polyurethane resin containing isocyanate is marked by excellent tensile and mechanical strengths and this test aims to gauge its applicability as a medical high polymer. Tris [2-(acryloyloxy)ethyl]isocyanurate and hexamethylenediisocyanate were added to a basic mixing ratio of HEMA (2-hydroxyethyl methacrylate), MMA (methyl methacrylate), NVP (n-vinyl-2-pyrrolidone) and crosslink agent, EGDMA (ethylene glycol dimethacrylate) with increasing proportions and copolymerized respectively. Also, the basic physical properties of the polymerized high polymers including refraction rate, tensile strength, light transmission and water content were measured to confirm that they are appropriate as hydrogelcontact lenses. After measuring the physical properties of high performance polymers produced by adding tris [2-(acryloyloxy) ethyl]isocyanurate, it was found that the average tensile strengths of sample TRIS1 to TRIS10 were between 0.285 and 0.612 kgf, while the average values of refractive index were ranged from 1.441 to 1.449 with water content from 30.00 to 37.35%.The measurement of physical properties of the copolymers generated by adding hexamethylenediisocyanate showed that the average tensile strength of sample HEXA1 to HEXA10 ranged from 0.267 to 1.742 kgf, the refractive index ranged from 1.443 to 1.475 and water contents were in the range of 21.22 to 35.58%. In all combinations the transmission rates satisfied the transmittance of general hydrogel contact lenses. From theresults, it is possible to conclude that the produced copolymers can be used as contact lens materials with excellent tensile strength.