DOI QR코드

DOI QR Code

Manufacture and Analysis of Ophthalmic Polymers including Gold Nanoparticles with Surface Modification Method

  • Seon-Young Park (Department of Optometry & Vision Science, Daegu Catholic University) ;
  • Su-Mi Shin (Department of Optometry & Vision Science, Daegu Catholic University) ;
  • A-Young Sung (Department of Optometry & Vision Science, Daegu Catholic University)
  • Received : 2024.04.04
  • Accepted : 2024.04.17
  • Published : 2024.04.27

Abstract

In this study, the surfaces of two gold nanoparticles of different shapes were modified with hexadecyltrimethylammonium bromide (CTAB) and used for contact lenses. The polymer was based on 2-hydroxyethyl methacrylate (HEMA), and spherical and sea urchin-shaped gold nanoparticles were used as additives. CTAB was used to modify the surface of the sea urchin-shaped gold nanoparticles. To analyze the physical properties of the prepared contact lens, optical transmittance, refractive index, water content, contact angle, and atomic force microscope (AFM) were measured and evaluated. The results showed the nanoparticles did not significantly affect optical transmittance, refractive index, or water content of the lens, and tensile strength increased according to the ratio of the additive. The addition of the sea urchin-shaped nanoparticles resulted in lower wettability compared with the spherical nanoparticles, but somewhat superior tensile strength. In addition, it was found that the wettability of the lens was improved when the surface-modified sea urchin-shaped gold nanoparticles were added. The types of gold nanoparticles and surface modification methods used in this study are considered to have great potential for use in ophthalmic materials.

Keywords

Acknowledgement

This work was supported by research grants from Daegu Catholic University in 2023.

References

  1. J. U. Kim, K. J. Lee and M. I. Kim, Korean Soc. Biotechnol. Bioeng. J., 37, 41 (2022). 
  2. S. Peiris, J. McMurtrie and H. Y. Zhu, Catal. Sci. Technol., 6, 320 (2016). 
  3. P. N. Njoki, I. I. S. Lim, D. Mott, H. Y. Park, B. Khan, S. Mishra, R. Sujakumar, J. Luo and C. J. Zhong, J. Phys. Chem. C, 111, 14664 (2007). 
  4. P. K. Jain, K. S. Lee, I. H. El-Sayed and M. A. El-Sayed, J. Phys. Chem. B, 110, 7238 (2006). 
  5. S. A. Bansal, V. Kumar, J. Karimi, A. P. Singh and S. Kumar, Nanoscale Adv., 2, 3764 (2020). 
  6. M. Brust, J. Fink, D. Bethell, D. J. Schiffrin and C. Kiely, J. Chem. Soc., Chem. Commun., 1995, 1655 (1995). 
  7. A. E. Salih, M. Elsherif, F. Alam, A. K. Yetisen and H. Butt, ACS Nano, 15, 4870 (2021). 
  8. D. Costa, V. De Matteis, F. Treso, G. Montani, M. Martino, R. Rinaldi, M. Corrado and M. Cascione, Colloids Surf., B, 233, 113630 (2023). 
  9. G. Chwalik-Pilszyk and A. Wisniewska, Materials, 15, 930 (2022). 
  10. S. M. Shaban, J. Kang and D. H. Kim, Compos. Commun., 22, 100537 (2020). 
  11. S. Li, C. Qiao, Z. Li and S. Wanambwa, Energy Fuels, 31, 1478 (2017). 
  12. W. Cheng, S. Dong and E. Wang, Langmuir, 19, 9434 (2003). 
  13. R. Mosuela, S. Mustafa, S. Gould, H. Hassanin, R. G. Alany and A. ElShaer, Colloids Surf., B, 163, 91 (2018). 
  14. J. J. Nichols and L. T. Sinnott, Invest. Ophthalmol. Visual Sci., 47, 1319 (2006). 
  15. E. E. Connor, J. Mwamuka, A. Gole, C. J. Murphy and M. D. Wyatt, Small, 1, 325 (2005).