• Title/Summary/Keyword: 2-Dimensional

Search Result 15,171, Processing Time 0.046 seconds

Classification of a Volumetric MRI Using Gibbs Distributions and a Line Model (깁스분포와 라인모델을 이용한 3차원 자기공명영상의 분류)

  • Junchul Chun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.2 no.1
    • /
    • pp.58-66
    • /
    • 1998
  • Purpose : This paper introduces a new three dimensional magnetic Resonance Image classification which is based on Mar kov Random Field-Gibbs Random Field with a line model. Material and Methods : The performance of the Gibbs Classifier over a statistically heterogeneous image can be improved if the local stationary regions in the image are disassociated from each other through the mechanism of the interaction parameters defined at the local neighborhood level. This usually involves the construction of a line model for the image. In this paper we construct a line model for multisignature images based on the differential of the image which can provide an a priori estimate of the unobservable line field, which may lie in regions with significantly different statistics. the line model estimated from the original image data can in turn be used to alter the values of the interaction parameters of the Gibbs Classifier. Results : MRF-Gibbs classifier for volumetric MR images is developed under the condition that the domain of the image classification is $E^{3}$ space rather thatn the conventional $E^{2}$ space. Compared to context free classification, MRF-Gibbs classifier performed better in homogeneous and along boundaries since contextual information is used during the classification. Conclusion : We construct a line model for multisignature, multidimensional image and derive the interaction parameter for determining the energy function of MRF-Gibbs classifier.

  • PDF

Dipole-Dipole Array Geoelectric Survey for Gracture Zone Detection (전기비저항 탐사법을 이용한 지하 천부 파쇄대 조사)

  • Kim, Geon Yeong;Lee, Jeong Mo;Jang, Tae U
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.3
    • /
    • pp.217-224
    • /
    • 1999
  • Although faults can be found by geological surveys, the surface traces of faults are not easily discovered by traditional geological surveys due to alluvia. In and around faults and fracture zones, the electrical resistivity appears to be lower than that of the surroundings due to the content of groundwater and clay minerals. Therefore, electrical resistivity surveys are effective to search buried faults and fracture zones. The dipole-dipole array electrical resistivity surveys, which could show the two dimensional subsurface electrical resistivity structure, were carried out in two areas, Yongdang-ri, Woongsang-eup, Yangsan-si, Kyungsangnam-do and Malbang-ri, Woedong-eup, Kyungju-si, Kyungsangpook-do. The one was next to the Dongrae Fault and the other near the Ulsan Fault was close to the region in which debatable quaternary fault traces had been found recently. From each measured data set, the electrical resistivity cross-section was obtained using the inversion program the reliability of which was analyzed using analytic solutions. A low resistivity zone was found in the inverted cross-section from the Yongdang-ri area survey data, and two low resistivity zones were found in that from the Malbang-ri area survey data. They were almost vertical and were 15∼20 m wide. Accounting the shape and the very low resistivity values of those zones (<100 Ωm)in the inverted section, they were interpreted as fracture zones although they should be proven by trenching. The reliability of the interpretation might be improved by adding some more parallel resistivity survey lines and interpreting the results in 3 and/or adding other geophysical survey.

  • PDF

A Parallel Processing Technique for Large Spatial Data (대용량 공간 데이터를 위한 병렬 처리 기법)

  • Park, Seunghyun;Oh, Byoung-Woo
    • Spatial Information Research
    • /
    • v.23 no.2
    • /
    • pp.1-9
    • /
    • 2015
  • Graphical processing unit (GPU) contains many arithmetic logic units (ALUs). Because many ALUs can be exploited to process parallel processing, GPU provides efficient data processing. The spatial data require many geographic coordinates to represent the shape of them in a map. The coordinates are usually stored as geodetic longitude and latitude. To display a map in 2-dimensional Cartesian coordinate system, the geodetic longitude and latitude should be converted to the Universal Transverse Mercator (UTM) coordinate system. The conversion to the other coordinate system and the rendering process to represent the converted coordinates to screen use complex floating-point computations. In this paper, we propose a parallel processing technique that processes the conversion and the rendering using the GPU to improve the performance. Large spatial data is stored in the disk on files. To process the large amount of spatial data efficiently, we propose a technique that merges the spatial data files to a large file and access the file with the method of memory mapped file. We implement the proposed technique and perform the experiment with the 747,302,971 points of the TIGER/Line spatial data. The result of the experiment is that the conversion time for the coordinate systems with the GPU is 30.16 times faster than the CPU only method and the rendering time is 80.40 times faster than the CPU.

Positional change in mandibular condyle in facial asymmetric patients after orthognathic surgery: cone-beam computed tomography study

  • Choi, Byung-Joon;Kim, Byung-Soo;Lim, Ji-Min;Jung, Junho;Lee, Jung-Woo;Ohe, Joo-Young
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.40
    • /
    • pp.13.1-13.8
    • /
    • 2018
  • Background: We evaluated change in the mandibular condyle after orthognathic surgery using cone-beam computed tomography (CBCT) in patients with facial asymmetry. Methods: Thirty patients with skeletal class III malocclusion and mandibular prognathism or facial asymmetry were classified into two groups according to the amount of menton deviation (MD) from the facial midline on anteroposterior (AP) cephalogram: group A (asymmetry, MD ≥ 4 mm; n = 15) and group B (symmetry, MD < 4 mm; n = 15). Position and angle of condylar heads on the axial, sagittal, and coronal views were measured within 1 month preoperatively (T0) and postoperatively (T1) and 6 months (T2) postoperatively. Results: On axial view, both groups showed inward rotation of condylar heads at T1, but at T2, the change was gradually removed and the condylar head returned to its original position. At T1, both groups showed no AP condylar head changes on sagittal view, although downward movement of the condylar heads occurred. Then, at T2, the condylar heads tended to return to their original position. The change in distance between the two condylar heads showed that they had moved outward in both groups, causing an increase in the width between the two heads postoperatively. Analysis of all three-dimensional changes of the condylar head positions demonstrated statistically significant changes in the three different CBCT views in group B and no statistically significant changes in group A. Conclusions: There was no significant difference between the two groups in condylar head position. Because sagittal split ramus osteotomy can be performed without significant change in symmetrical and asymmetrical cases, it can be regarded as an effective method to stabilize the condylar head position in patients with skeletal class III malocclusion and mandibular prognathism or facial asymmetry.

A Study on the Push and Pull Factors of Temple Stay in Korean National Parks - Focused on Temples in National Parks in Gangwon-Do - (국립공원 내 템플스테이의 추진요인과 유인요인에 관한 연구 - 강원도 소재 국립공원 내 사찰을 중심으로 -)

  • Kim, Jeong-Min
    • Korean Journal of Environment and Ecology
    • /
    • v.25 no.4
    • /
    • pp.621-630
    • /
    • 2011
  • This research examines the push and pull factors of temple stay in Korean national parks. 152 participants of temple stay in Woljeongsa and Guryongsa in national parks in Gangwon-do area completed a survey to access their reasons for participating in temple stay(push factors) and to evaluate how well the visiting experience performed on a selected set of attributes(push factors). Demographics of respondents were similar to the visitor characteristics of Korean national parks. The result of factor analysis identified 6 push factor domains of 'self actualization', 'health enhancement', 'nature assimilation', 'relationship elevation', 'religious experience', and 'leisure experience'. 6 pull factor domains were 'recuperative quality', 'quality of a temple stay program', 'attributes of a temple', 'user convenience', 'tourism experience' and 'accessibility and transportation'. Satisfaction level of temple stay in a national park was very high of 4.71 in a 5 Likert scale. Gangwon- Do was most preferred with the percentage of 89.2 as a suitable area for temple stay in a national park. Findings of multi-dimensional tourism motivations of temple stay in a national park that encompass nature tourism, cultural tourism and religious tourism is expected to provide useful information for the future development of a more competitive temple stay program and a marketing strategy. However, more defined successive research work is required to generalize findings of wellness oriented push and pull factors of temple stay based on nature in national parks.

Comparison of an Analytic Solution of Wind-driven Current and all (x-$\sigma$) Numerical Model (취송류의 해석위와 (x-$\sigma$) 수치모형과의 비교)

  • 이종찬;최병호
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.4 no.4
    • /
    • pp.208-218
    • /
    • 1992
  • Analytic solutions for the gradient of surface elevation and vertical profiles of velocity driven by the wind stress in the one-dimensional rectangular basin were obtained under the assumption of steady-state. The approach treats the bottom frictional stress $\tau$$_{b}$ as known and includes vertically varying eddy viscosity $textsc{k}$$_{M}$, which is constant, linear and quadratic of water depth. When the $\tau$$_{b}$ is param-terized with surface stress, depth averaged velocity and bottom velocity, the result shows the relation of the no-slip bottom velocity condition and the bottom frictional stress $\tau$$_{b}$. The results of a mode splitted, (x-$\sigma$) coordinate, numerical model were compared with the derived analytic solutions. The comparison was made for the case such that $textsc{k}$$_{M}$ is the constant, linear and quadratic function of water depth. In the case of constant $textsc{k}$$_{M}$, the gradient of surface elevation and vertical profiles of velocity are discussed for a uniform depth, a mild slope and a relatively steep slope. When $textsc{k}$$_{M}$ is a linear and quadratic function of water depth, the vertical structures of velocities are discussed for various $\tau$$_{b}$. The result of the comparison shows that the vertical structure of velocities depends not only on the value of $textsc{k}$$_{M}$ but also on the profile of $textsc{k}$$_{M}$ and bottom stress $\tau$$_{b}$. Model results were in a good agreement with the analytic solutions considered in this study.his study.y.his study.

  • PDF

Development of Radiation Shielding Analysis Program Using Discrete Elements Method in X-Y Geometry (2차원 직각좌표계에서 DEM을 이용한 방사선차폐해석 프로그램개발)

  • Park, Ho-Sin;Kim, Jong-Kyung
    • Nuclear Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.51-62
    • /
    • 1993
  • A computational program [TDET] of the particle transport equation is developed on radiation shielding problem in two-dimensional cartesian geometry based on the discrete element method. Not like the ordinary discrete ordinates method, the quadrature set of angles is not fixed but steered by the spatially dependent angular fluxes. The angular dependence of the scattering source term in the particle transport equation is described by series expansion in spherical harmonics, and the energy dependence of the particles is considered as well. Three different benchmark tests are made for verification of TDET : For the ray effect analysis on a square absorber with a flat isotropic source, the results of TDET calculation are quite well conformed to those of MORSE-CG calculation while TDET ameliorates the ray effect more effectively than S$_{N}$ calculation. In the analysis of the streaming leakage through a narrow vacuum duct in a shield, TDET shows conspicuous and remarkable results of streaming leakage through the duct as well as MORSE-CG does, and quite better than S$_{N}$ calculation. In a realistic reactor shielding situation which treats in two cases of the isotropic scattering and of linearly anisotropic scattering with two groups of energy, TDET calculations show local ray effect between neighboring meshes compared with S$_{N}$ calculations in which the ray effect extends broadly over several meshes.eshes.

  • PDF

Effects of Contraction of Abdominal Muscles on Electromyographic Activities of Superficial Cervical Flexors, Rib Cage Elevation and Angle of Craniocervical Flexion During Deep Cervical Flexion Exercise (심부경부굴곡 운동 시 복근 수축이 표면경부굴곡근의 근활성도, 흉곽 거상, 두개경부굴곡 각도에 미치는 영향)

  • Park, Kyue-Nam;Won, Jong-Hyuck;Lee, Won-Hwee;Chung, Sung-Dae;Jung, Doh-Heon;Oh, Jae-Seop
    • Physical Therapy Korea
    • /
    • v.16 no.3
    • /
    • pp.9-15
    • /
    • 2009
  • The purpose of this study was to examine contraction of abdominal muscles on surface electromyographic (EMG) activity of superficial cervical flexors, rib cage elevation and angle of craniocervical flexion during deep cervical flexion exercise in supine position. Fifteen healthy subjects were participated for this study. All subjects performed deer cervical flexion exercise with two methods. The positions of two methods were no volitional contraction of abdominal muscles in hook-lying position with 45 degree hip flexion (method 1) and 90 degrees hip and knee flexion with feet off floor for inducing abdominal muscle contraction (method 2). Surface EMG activities were recorded from five muscles (sternocleidmastoid, anterior scaleneus, recuts abdominis, external oblique, internal oblique). And distance of rib cage elevation and angle of craniocervical flexion were measured using a three dimensional motion analysis system. The EMG activity of each muscle was normalized to the value of reference voluntary contraction (%RVC). The EMG activities, distance of rib cage elevation. and angle of craniocervical were compared using a paired t-test between two methods. The results showed that the EMG activities of sternocleidmastoid and anterior scaleneus during deep cervical flexion exercise in method 2 were significantly decreased compared to method 1 (p<.05). Distance of rib cage elevation and angle of craniocervical flexion were significantly decreased in method 2 (p<.05). The findings of this study indicated that deep cervical flexion exercise with contraction of abdominal muscles could be an effective method to prevent substitute motion for rib cage elevation and contraction of superficial neck flexor muscles.

  • PDF

Numerical Experiments of Vegetation Growth Effects on Bed Change Patterns (식생생장 영향을 고려한 하도변화에 대한 수치모의)

  • Kim, Hyung Suk;Park, Moon Hyeong;Woo, Hyo Seop
    • Ecology and Resilient Infrastructure
    • /
    • v.1 no.2
    • /
    • pp.68-81
    • /
    • 2014
  • In this study, the numerical simulation regarding the process and characteristics of topography change due to the vegetation recruitment and growth was carried out by adding the vegetation growth model to two-dimensional flow and sediment transport models. The vegetation introduction and recruitment on the condition for developing an alternate bar reduced the bar migration. The vegetated area and channel width changes were more significantly influenced by changes in upstream discharge rather than the duration of low flow. When the upstream discharge decreased, the vegetation area increased and the channel width decreased. The vegetation introduction and recruitment on the condition for developing a braided channel significantly influenced the characteristics of topography changes. In the braided channel, vegetation reduced the braided index, and when the upstream discharge decreased significantly, the channel topography was changed from the braided channel to the single channel. The vegetation area decreased as the upstream discharge increased. The channel width decreased significantly after the vegetation was introduced and it also decreased as the upstream discharge decreased. It was confirmed through the numerical simulation that a decrease in flood discharge accelerated the vegetation introduction and recruitment in the channel and this allowed to confirm its influence on the characteristics of topography changes qualitatively.

Application of an Automated Time Domain Reflectometry to Solute Transport Study at Field Scale: Transport Concept (시간영역 광전자파 분석기 (Automatic TDR System)를 이용한 오염물질의 거동에 관한 연구: 오염물질 운송개념)

  • Kim, Dong-Ju
    • Economic and Environmental Geology
    • /
    • v.29 no.6
    • /
    • pp.713-724
    • /
    • 1996
  • The time-series resident solute concentrations, monitored at two field plots using the automated 144-channel TDR system by Kim (this issue), are used to investigate the dominant transport mechanism at field scale. Two models, based on contradictory assumptions for describing the solute transport in the vadose zone, are fitted to the measured mean breakthrough curves (BTCs): the deterministic one-dimensional convection-dispersion model (CDE) and the stochastic-convective lognormal transfer function model (CLT). In addition, moment analysis has been performed using the probability density functions (pdfs) of the travel time of resident concentration. Results of moment analysis have shown that the first and second time moments of resident pdf are larger than those of flux pdf. Based on the time moments, expressed in function of model parameters, variance and dispersion of resident solute travel times are derived. The relationship between variance or dispersion of solute travel time and depth has been found to be identical for both the time-series flux and resident concentrations. Based on these relationships, the two models have been tested. However, due to the significant variations of transport properties across depth, the test has led to unreliable results. Consequently, the model performance has been evaluated based on predictability of the time-series resident BTCs at other depths after calibration at the first depth. The evaluation of model predictability has resulted in a clear conclusion that for both experimental sites the CLT model gives more accurate prediction than the CDE model. This suggests that solute transport at natural field soils is more likely governed by a stream tube model concept with correlated flow than a complete mixing model. Poor prediction of CDE model is attributed to the underestimation of solute spreading and thus resulting in an overprediction of peak concentration.

  • PDF