

A Parallel Processing Technique for Large Spatial Data

1

†
*

**

This paper was supported by Research Fund, Kumoh National Institute of Technology.

Seunghyun Park, Master‘s Student, Dept. of Computer Engineering, Kumoh National Institute of Technology.
seeduz1113@gmail.com
Byoung-Woo Oh, Professor, Dept. of Computer Engineering, Kumoh National Institute of Technology. bwoh@kumoh.ac.kr
(Corresponding Author)

A Parallel Processing Technique for Large Spatial Data

대용량 공간 데이터를 위한 병렬 처리 기법†
Seunghyun Park ․ Byoung-Woo Oh

박승현* ․오병우**

요 약 그래픽 처리 장치(GPU)는 내부에 대량의 산술 논리 연산 장치(ALU)를 보유하고 있다. 대량의 ALU는 병렬 처

리를 위해 이용될 수 있으므로, GPU는 효율적인 데이터 처리를 제공한다. 공간 데이터를 지도상에 표현하기 위하여 지

리학적 좌표가 필요하다. 좌표들은 측지경도와 측지위도의 형태로 저장된다. 데카르트 좌표계로 구성된 지도를 표현하

기 위하여 측지경도와 측지위도는 국제 횡단 메르카토르 좌표계(UTM)로 전환돼야 한다. 좌표계 변환 과정과 변환된 좌

표를 화면상에 표현하기 위한 렌더링 과정은 복잡한 부동 소수점 계산이 필요하다. 본 논문에서는 성능 향상을 위해

GPU를 활용한 좌표변환 과정과 렌더링 과정을 병렬적으로 처리하는 기법을 제안한다. 대용량 공간 데이터는 파일로 디

스크 내에 저장된다. 대용량 공간 데이터를 효율적으로 처리하기 위하여 공간 데이터 파일들을 하나의 대용량 파일로

병합하고 Memory Mapped File 기법을 활용하여 파일에 접근하는 기법을 제안한다. 본 논문에서는 TIGER/Line 데이

터를 활용하여 747,302,971개의 점으로 구성된 공간 데이터의 좌표 변환 및 렌더링 처리 과정을 GPU를 활용하여 병렬

로 수행하는 연구를 진행한다. CPU를 이용하여 좌표변환 과정 결과와 렌더링 처리 과정 결과를 비교하여 속도 향상 정

도에 대한 결과를 제시한다.

키워드 : GPU, CUDA, Memory Mapped File, 병렬 처리, 공간 데이터

Abstract Graphical processing unit (GPU) contains many arithmetic logic units (ALUs). Because many ALUs can
be exploited to process parallel processing, GPU provides efficient data processing. The spatial data require many
geographic coordinates to represent the shape of them in a map. The coordinates are usually stored as geodetic
longitude and latitude. To display a map in 2-dimensional Cartesian coordinate system, the geodetic longitude and
latitude should be converted to the Universal Transverse Mercator (UTM) coordinate system. The conversion to the
other coordinate system and the rendering process to represent the converted coordinates to screen use complex
floating-point computations. In this paper, we propose a parallel processing technique that processes the conversion
and the rendering using the GPU to improve the performance. Large spatial data is stored in the disk on files. To process
the large amount of spatial data efficiently, we propose a technique that merges the spatial data files to a large file and
access the file with the method of memory mapped file. We implement the proposed technique and perform the
experiment with the 747,302,971 points of the TIGER/Line spatial data. The result of the experiment is that the
conversion time for the coordinate systems with the GPU is 30.16 times faster than the CPU only method and the
rendering time is 80.40 times faster than the CPU.

Keywords : GPU, CUDA, Memory Mapped File, Parallel processing, Spatial Data

1. 서 론

The Graphical Processing Unit(GPU) is originally

used for processing computer graphics. To assure

rendering beautiful graphic effect, the GPU has a lot

of arithmetic logic units (ALUs). The number of the

GPU’s ALU is larger than the CPU’s. This makes the

GPU operate floating point more rapid than the CPU.

Compare with the GPU and the CPU computing speed,

the GPU is superior to the CPU’s computing speed.

Therefore, the GPU can be used to process computations

because of the GPU’s overwhelming ability compared

with the CPU. The GPU’s cores are constructed in

parallel. It is possible to be used to improve performance,

Journal of Korea Spatial Information Society Vol.23, No.2 : 1-9, April 2015 ISSN 2287-9242(Print)

http://dx.doi.org/10.12672/ksis.2015.23.2.001 ISSN 2287-9250(Online)

Seunghyun Park, Byoung-Woo Oh

2

which processes same calculation with many data.

There are many researches about parallel processing

using the GPU in many areas. In algorithm area, there

are many researches about sorting algorithms in parallel

[1,2,3]. In multimedia area, researches are being

preceded for image processing and coding moving

pictures[4,5,6,7,8].

Spatial data have been widely used as the location

becomes important in the mobile environment. There

are many studies to process spatial data efficiently.

When users process spatial data, they want to represent

spatial data onto a map. It takes much time to process

spatial data because they usually contain a large amount

of coordinates which are necessary to compute the

geometry calculation. It is inefficient to process spatial

data only using the CPU. Thus, there are attempts to

apply parallel processing of spatial data not only using

the CPU but also using the GPU[9,10,11]. Lee[11]

tried to use the GPU to calculate graphics transform

operations, such as rotate, scale, and translate. As a

result of Lee[11], it takes much time to transfer the

result of the graphics transform operations from the

GPU to the CPU. In order to reduce the transferring

time for the result, we propose a technique that renders

the calculated coordinates in parallel way and transfers

the final rendered bitmap to the CPU.

In this paper, we propose a parallel processing

technique for large spatial data. It deals with the large

file that stores spatial data bigger than 4GB. Many

original spatial data files are merged to three files:

spatial record file, part file, and point file. The spatial

record file and part file are smaller than 4GB, but the

point file is very large. The size of a point file for

the experiment is 11GB. The logical limit of the size

is 16EiB in the 64-bit operating system. If the point

file is very large, it is hard to load whole spatial data

into main memory. We exploit the memory mapped

file provided by the Microsoft Windows operating

system to access the very large point file efficiently.

The memory mapped file provides access a file as a

way of a memory access. Memory mapped file loads

a part, named as view, of a file to the main memory.

This process is useful to access large spatial data

sequentially. Some studies exploit the memory mapped

file to share data[12]. The proposed technique loads

the large spatial data with the memory mapped file

and processes the loaded spatial data in parallel way.

The result of the parallel process is rendered onto a

bitmap in parallel way again.

This paper is organized as follows. Chapter 2 in-

troduces CUDA and memory mapped file. Chapter 3

describes the proposed technique for processing large

spatial data with CUDA. Chapter 4 reports the result

of the experiment. Finally, chapter 5 presents con-

clusion and future work.

2. Related Works

2.1 CUDA

NVIDIA developed computing unified device archi-

tecture (CUDA) for general purpose usage of the

GPU[13]. After introducing CUDA, researchers have

applied GPU technology in many areas. The researchers

can easily process a large amount of data efficiently

by utilizing parallelism of the GPU. CUDA’s codes

are written by C language and exploited in the GPU.

CUDA accesses to distinct command and memory of

the GPU. CUDA is provided by NVIDIA Geforce ser-

ies the GPU.

CUDA consists of threads, blocks which are set of

thread and Grids which are sets of block. Each kernel

function makes grid for parallel processing. The Grid

makes one or two dimensional block. Block makes

three dimensional threads and allocates calculation.

CUDA usually uses three memories which are local

memory, shared memory, global memory. Each thread

has own local memory. Each block has shared memory

which is for sharing data between threads which are

in the block.

CUDA provides kernel functions which can be exe-

cuted on many GPU cores in parallel. In the kernel

function, CUDA sets the number of blocks and threads

by using symbols; “<<<”, “>>>”. Symbol “>>>”

makes threads which are applied to operation. Symbol

“<<<” determines that the number of blocks are used

for operation. Total numbers of threads for operation

are calculated at the number of blocks times the num-

ber of threads per each block. CUDA provides varia-

bles for operation. Threads which are in a block have

A Parallel Processing Technique for Large Spatial Data

3

Figure 1. Example of accessing a memory mapped file

own variable which is called threadIDX. By setting di-

mension of thread, threadIDX can have values of x,

y and z. Variable blockIDX which is built in variable

in CUDA identifies a block in Grid. Variable blockdim

identifies that blocks are set to one or two dimension.

The variables can be accessed in kernel function. In

order to process data on the GPU, CUDA introduces

kernel functions which are built in CUDA. Kernel

function “cudaMalloc()” function allocates memory on

the GPU memory. For transmitting data between CPU

memory and GPU memory, “cudaMemcpy()” function

is used.

2.2 Memory Mapped File

Memory Mapped File (MMF) which is provided by

Operating System is a way to handle files. MMF is

used to handle large files. MMF maps memories of

parts of file to virtual memory on process. MMF can

be shared with several processes. Blocks of file are

connected with Pages in process. MMF processes I/O

performance by approaching addresses of virtual mem-

ory directly. Data are not changed simultaneously on

processing MMF. Data are changed when memory

frees Pages or MMF is closed. Because approaching

memory directly, it is efficient for MMF to handle

large files. When data of files are changed, whole files

are allocated to main memory and saved again. It takes

much time to handle files. Though, MMF loads part

of a file into main memory without loading whole files.

It can improve performance.

Figure 1 shows a block diagram of MMF. In order

to use MMF, users create Views which can be entire

file or part of the file. MMF handles large file by using

Views. Views consist of Pages. Pages are constructed

at 64Kb. Users make views at 64Kb when utilizing

Views. The views are allocated to virtual memory on

process. When we have to change data on file, we find

location of the data by offset of views. For example,

we change data which are in View C area. We find

offset of View C. View C is loaded into main memory.

After change the data of View C, changed data are

maintained in file which is in disk. Without data of

View C, other data are not changed and maintained

in disk. This process is a benefit of MMF. Therefore,

MMF has a benefit for processing spatial data. Files

which consist of spatial data are very large. When we

scale spatial data in shape file, spatial data in shape

file are changed. It takes much time to load shape file

to memory and saved to disk. Though, MMF loads

data which are had to change to memory and reduces

processing time.

3. Technique for processing large
spatial data

We propose a parallel processing technique for large

spatial data. The main idea of the proposed technique

consists of two parts: using memory mapped file for

large spatial data and using the GPU to calculate the

coordinates of the spatial data and to render the result

of the calculation.

3.1 File and Data Structure

There are several kinds of types for spatial data, such

as point, polyline, polygon, etc. In this paper, we deal

with the polyline data type. A polyline consists of one

or more parts. The part of the polyline consists of one

or more line segments with points. Figure 2 shows the

structure of the three files: spatial record file (*.spt),

part file (*.prt), and point file (*.pnt).

The spatial record file consists of 4 attributes: the

number of points, the number of parts, the starting in-

dex of the part, and the starting index of the point.

In Figure 2, the first record in the spatial record file

represents that it has 5 points and 2 parts. The start

index of the part file is 0.

The start index of the point file is 0. The part file

has only the number of points. In Figure 2, the first

part in the part file has 3 points. The point file has

Seunghyun Park, Byoung-Woo Oh

4

Figure 2. Structure of the files

Figure 3. Section in-memory Structure for the point file

x and y coordinates for each point.

For processing spatial data on GPU, spatial data

should be allocated to memory in the GPU. According

to the limit of the main memory size and GPU memory

size, large point file cannot be allocated to main

memory and GPU memory. Figure 3 shows the memory

structure to process spatial data. The part structure is

loaded from the part file (*.prt) onto the main memory

and the GPU memory at the same time.

Since the point is very large file, it could not be

loaded onto the memory in the whole file. In order

to load onto the memory, it should be divided by

section. The max size of the section is decided by the

size of the memory in the GPU. We use the half size

of the GPU’s memory size as the max size.

Because the section size cannot exceed the max size,

the section 0 is assigned the parts from 0 to n-1. Notice

that the rectangle (white box) which is located at the

right and is not filled with color in Figure 3 contains

nothing in section 0. The section 1 has parts from n

as shown in Figure 3. The starting offset of the first

point of the section 1 is expected to be the starting

offset of the first point of the nth part. There is

restriction of using memory mapped file. A memory

mapped view of a file aligned to 64KB boundaries.

When the process read the section 1 from the point

file, the start offset should be adjusted to the unit of

64KB. The left-side white rectangle area of the section

1 represents the adjustment in Figure 3. The section

loaded from the point file is transferred to the GPU

memory.

There are three functions are used to manage the

memory mapped file in the Microsoft Windows

operating system, such as CreateFile(), and CreateFile

Mapping(), and MapViewOfFile() function. The Create

File() function opens the point file with parameters,

such as GENERIC_READ, OPEN_EXISTING, FILE_FLAG_

SEQUENTIAL_SCAN. The CreateFileMapping() function

prepares the memory mapped file with parameter

PAGE_READONLY. The MapViewOfFile() function

returns a pointer to the memory address. The section

data structure stores high, low, and diff attributes to

be used to call the MapViewOfFile() function. The high

attribute is used to set the high-order DWORD of the

file offset where the view begins. The low attribute

is the low-order DWORD. The diff is the start offset

A Parallel Processing Technique for Large Spatial Data

5

Figure 4. Algorithm of Processing Sections Using GPU

of the actual point. It’s presented as the left-side white

rectangle area of the section 1 in Figure 3.

Memory is allocated in the GPU with cudaMalloc()

function before processing the section. The size of the

memory allocated in the GPU is represented as the max

size in Figure 3.

Once the memory is allocated in the GPU, then the

memory is reused for every section to load point data.

3.2 Processing Section

Since the spatial data are usually large, it should be

divided into smaller part to fit in the memory size.

In this paper, we divide the point file into sections.

The section is corresponding to the view of the memo-

ry mapped file. For processing large spatial data effi-

ciently by using memory mapped file, there are two

methods; merging files and making section. In order

to improve processing time, it is efficient to merge

original spatial data files into a file. The limit of the

file size is 4GB in shape file format (*.shp) which is

the de-facto standard to share spatial data. For exam-

ple, the sum of the sizes of the shape files which con-

sist of whole edges (all lines theme) of the TIGER/Line

shape file is bigger than 4GB. Loading each shape files

to memory is not efficient. We merge the shape files

and convert to three files as described in the section A.

Algorithm of processing sections are shown in Figure 4.

The sections are read sequentially from the point file

and loaded onto the main memory. After reading a sec-

tion, the section should be transferred to the GPU.

The cudaMemcpy() function is used to load the point

of the section onto the GPU memory. The TIGER/Line

data use the North America Datum (NAD83). To dis-

play a map in 2-dimensional Cartesian coordinate sys-

tem, the point loaded to the GPU should be converted

from the geodetic coordinate system to the Universal

Transverse Mercator (UTM) coordinate system. The

conversion includes graphics transform such as scale

and translation, in this paper. The converted coordinate

is rendered to the bitmap. The conversion and the ren-

dering are processed in parallel way to increase the

performance using CUDA.

The last step is the transferring the result bitmap

from GPU to CPU by calling CudaGetBitmapFromGPU()

function. The bitmap is the device independent bitmap

(DIB). It is described in the next section.

3.3 Using CUDA

There are several functions designed for using

CUDA in this paper. The CudaInit() function calls the

cudaGetDeviceProperties() to get the total global mem-

ory in the GPU. The CudaAllocData() function calls

the cudaMalloc() function to allocate the point data and

the result of the coordinate conversion. CudaLoadPart

DataFromCPU() function allocates and copies the part

data. CudaSetBitmapFromCPU() function allocates the

device independent bitmap (DIB) to be used to render

spatial shape and copies the DIB from the CPU to the

allocated DIB. The DIB is a data structure for the

Windows graphics. It contains the device independent

pixel array for bitmap. The size of the bitmap is set

to 1920 x 1080. The DIB is created by calling the

CreateDIBSection() function and is selected to the buf-

fer device context (DC) as the bitmap object. These

functions are called when the document is loaded be-

fore processing sections.

The CudaTransferSectionPointDataToGPU() func-

tion loads the point data to the memory already allo-

cated by the CudaAllocData() function. The main func-

tion is CudaDrawBitmap(). It invokes the CUDA glob-

al functions, such as convert() and render(). Figure 5

shows the pseudo code of the CudaDrawBitmap()

function.

The convert() function is executed in parallel and

converts the coordinate system. Figure 6 shows the

Seunghyun Park, Byoung-Woo Oh

6

Figure 5. Main Function for Drawing a Map in Parallel

Figure 6. Convert Function for the Coordinate System

Figure 7. Render Function for Drawing Lines onto the

DIB

pseudo code of the convert() function.

Before draw DIB in parallel, we should translate co-

ordinate in parallel. Original coordinates consist of

NAD83 coordinates. It is not useful to express spatial

data on the flat screen. We translate NAD83 coordinate

to TM coordinate. In order to translate coordinates in

parallel, GPU calls convert() function. Execution con-

figuration of function consists of two variables; grid

and threads. Variable “grid” means the number of

blocks which are in CUDA cores and “threads” means

the number of threads which are in a block.

Converted points are drawn on the DIB by calling

render() function in parallel. Figure 7 shows the pseudo

code of the render() function.

The render() function uses similar execution config-

uration which is used for convert() function. The con-

vert() function uses the number of points and the ren-

der() function uses the number of parts. In order to

draw a map, GPU should put pixels and draw lines

on DIB in parallel. There are two CUDA device func-

tions; __device__ DrawLine() and __device__ PutPixel().

These functions are invoked by the CudaDrawBitmap()

function. By Calling these functions, we can draw a

map in parallel.

After drawing a map, CUDAGetBitmapFromGPU()

function is called. GPU transfers bitmap from GPU

memory to CPU memory. CPU transfers points of next

section and bitmap from CPU memory to GPU

memory. These processes continue until points of last

section and bitmap are transferred and drawn on GPU.

Finally, a map is shown on screen after drawing points

of last section on DIB in GPU.

4. Experiment and Result

All experiments are performed on a machine

Microsoft Windows 7 with an Intel® Core™ i7-3770

CPU running at 3.40GHz and 16GB of memory. It is

equipped with an NVIDIA GeForce GTX Titan Black

graphic card. It has 2,880 CUDA cores. Each CUDA

core contains arithmetic logic unit(ALU) for calculat-

ing floating point. The memory size of the graphic cars

is 6GB. It is used to loading data for CUDA or graphic

operations. Memory interface width of the graphic card

is 384-bit and memory bandwidth is 336GB per

second. We implement the test system with the CUDA

SDK version 6.5. The storage for the spatial data is

the 256GB SSD.

4.1 Data Set

The data set for experiment is a set of the edges

of United States of America whose layer type is all

lines in the TIGER/Line data. The Alaska and Hawaii

states are excluded only for the shape of the display.

The Tiger/Line data files contain geographic features

such as roads, rivers, zip codes, political boundaries,

legal and statistical geographic areas, etc. The U.S.

Census Bureau developed the TIGER/Line data and

provides files on its website[14]. Figure 8 shows whole

data set. There are 68,967,233 spatial records and

747,302,971 points in the data set.

A Parallel Processing Technique for Large Spatial Data

7

Figure 8. Edges Data set of the TIGER/Line data

Figure 9. Algorithm of Processing Sections Using CPU

for Comparison

Table 1. Result of the Experiments

CPU/GPU Read File Load to GPU Convert Render Transfer Total

CPU 36,386.62ms - 85,186.81ms 24,679.70ms - 146,253.13ms

GPU 36,386.62ms 2,324.09ms 2,824.79ms 305.52ms 1.46ms 41,842.17ms

4.2 Implementing the System for the Experiment

In order to implement the experiment, several shape

files were merged into one file. Original shape files

contained whole edges of each state. In order to show

whole edges of the United States of States, we merged

several shape files into one shape file. We divided

edges 4 areas such as western, central, south-eastern

and eastern edges because of the limit size of shape

file. We made spt, prt, and pnt files for showing whole

edges of United States of America. Figure 8 shows

whole edges of United States of America after merging

into a file. In order to gather reliable result, we exe-

cuted experiment 1,000 times. Figure 9 shows the algo-

rithm of processing section using CPU for comparison

with the GPU usage.

4.3 Result of the Experiment

To compare the performance, experiment was exe-

cuted on CPU and GPU. Translating coordinates and

drawing a map were executed on CPU, and then exe-

cuted on GPU, and total execution times were compared.

Total time was gathered by adding Read File, Load

to GPU, Convert, Render, Transfer DIB times. Table

1 shows the results for total execution time.

The execution times on CPU were gathered at 146,253.13

ms. The gap of execution time between CPU and GPU

arose at the Convert time and Draw time. The Convert

time on CPU took 85,186.81ms. In contrast, the

Convert time on GPU took 2,824.79ms. The result

means that the conversion of coordinates of points on

GPU is 30.16 times faster than CPU. The gap of the

Render time is much bigger than the Convert time. The

Render time on CPU took 24,679.70ms.

The Render time on GPU took 305.52ms and 1.46ms

to transfer the result DIB. The rendering time on GPU

is 80.40 times faster than CPU. Those two gaps of re-

sult made performance different.

As can be seen in Figure 10, processing large spatial

data on GPU is much faster than executed on CPU.

The gap of performance time arose mainly in the

Convert time and the Render time. The reason why

GPU is faster than CPU is that translating coordinates

and drawing a map was executed in parallel. When

drawing a map on GPU, putting pixels and drawing

lines were processed in parallel on DIB. Though, costs

of drawing a map on CPU increased because putting

pixels and drawing lines sequentially. This could re-

duce much performance time than executing on CPU.

The experiment showed that processing spatial data on

GPU improves performance 3.50 times faster com-

pared to processing on CPU.

5. Conclusion

This paper proposed the parallel processing techni-

Seunghyun Park, Byoung-Woo Oh

8

Figure 10. Comparison of the execution time between

CPU and GPU

que for large spatial data by using memory mapped

file and GPU. It achieves high speed by handling large

volume of file efficiently and applying parallelism of

GPU on main processes. In general, volumes of spatial

data are large. According to limit size of memory, this

occurred memory problem. In order to solve this prob-

lem this arose when processing large spatial data, this

paper applies memory mapped file to processing large

spatial data. Files which include whole edges of the

United States of America are up to 11GB. These files

can’t be loaded in main memory. Therefore, this paper

makes intersection to handle those files. Spatial records

of whole spatial data divided into several sections.

Sections can be loaded in main memory. In order to

improve performance, this paper applies technique.

Technique is that preloads next section while present

section is processed. Another way to improve perform-

ance is to use GPU for parallelism. In order to process

spatial data in parallel, points of spatial data and bit-

map are copied to GPU memory. In order to improve

performance, GPU memory preloads parts and points

start index. On GPU, coordinates of spatial data are

translated in parallel. For drawing a map, it is needed

to put pixels and draw lines. This paper puts pixels

and draws lines on DIB in parallel. CUDA kernel func-

tions make them available. Those processes enhance

performance. After drawing a map on GPU, Bitmaps

which include map are copied to main memory.

Proposed two ways to process large spatial data enhan-

ces performance. In order to prove that proposed meth-

ods are efficient, the execution time is compared with

the Convert time and the Render time between CPU

and GPU. With respect to performance time, the

Convert time and the Render time which executed on

GPU are much faster than executed on CPU. The pro-

posed technique enhances the performance 350%.

Our future works could focus on combining the tech-

nique with the distributed system using Hadoop.

References

[1] Satish, N; Kim, C; Chhugani, J; Nguyen, A. D;

Lee, V. W; Kim, D; Dubey, P. 2010, Fast sort

on CPUs and GPUs: a case for bandwidth oblivious

SIMD sort, Paper presented at the 2010 ACM

SIGMOD International Conference on Management

of data, June 6-11.

[2] Tanasic, I; Vilanova, L; Jordà, M; Cabezas, J;

Gelado, I; Navarro, N; Hwu, W. 2013, Comparison

based sorting for systems with multiple GPUs,

Paper presented at the 6th Workshop on General

Purpose Processor Using Graphics Processing

Units, March 16.

[3] White, S; Verosky, N; Newhall, T. 2012, A

CUDA-MPI Hybrid Bitonic Sorting Algorithm

for GPU Clusters, Paper presented at 41st interna-

tional Conference on Parallel Processing Work-

shops, September 10-13.

[4] Reis, G; Zeilfelder, F; Hering-Bertram, M; Farin,

G; Hagen, H. 2008, High-Quality Rendering of

Quartic Spline Surfaces on the GPU, IEEE Trans-

actions on Visualization and Computer Graphics,

14(5):1126-1139.

[5] Jalba; Andrei, C; Kustra; Jacek; Telea; Alexandru,

C. 2012, Surface and Curve Skeletonization of

Large 3D Models on the GPU, IEEE Transactions

on Pattern Analysis and Machine Intelligence,

35(6):1495-1508.

A Parallel Processing Technique for Large Spatial Data

9

[6] Brown, J. A; Capson, D. W. 2012, A Framework

for 3D Model-Based Visual Tracking Using a

GPU-Accelerated Particle Filter, IEEE Transactions

on Visualization and Computer Graphics, 18(1):

66-80.

[7] Heidari, H; Chalechale, A; Mohammadabadi, A.

A. 2013, Accelerating of Color Moments and

Texture Features Extraction Using GPU Based

Parallel Computing, Paper presented at the 2013

8th Iranian Conference on Machine Vision and

Image Processing(MVIP), September 10-12.

[8] Berjón, D; Cuevas, C; Morán F; Garcia N. 2012,

Moving Object Detection Strategy for Augmented-

Reality Applications in a GPGPU by Using CUDA,

Paper presetend at the 2012 IEEE International

Conference on Consumer Electronics (ICCE),

January 13-17.

[9] Kim, S; Oh, B. W. 2012, A Parallel Processing

Method for Partial Nodes in R*-tree Using GPU,

The Journal of Korea Spatial Information Society,

20(6):139-144.

[10] Zhang, J. 2011, Speeding Up Large-Scale Geo-

spatial Polygon Rasterization on GPGPUs, Paper

presented at the ACM SIGSPATIAL Second

International Workshop on High Performance and

Distributed Geographic Information Systems,

November 1-4.

[11] Lee, J. I; Oh, B. W. 2009, An Efficient Technique

for Processing of Spatial Data Using GPU, The

Journal of GIS Association of Korea, 17(3):371-379.

[12] Chen, P; Chang, J; Zhuang, Y; Shieh, C; Liang,

T. 2009, Memory-Mapped File Approach for On-

Demand Data Co-allocation on Grids, Paper

presented at CCGRID '09, May 18-21.

[13] NVIDIA, 2014, NVIDIA CUDATM C Programming

Guide (Version6.5).

[14] U.S. Census Bureau, 2014, TIGER products

website, [Online] Available: http://www.census.gov/

geo/www/tiger.

Received：2015.02.06
Revised ：2015.04.02
Accepted：2015.04.08

