• Title/Summary/Keyword: 2-D shape

Search Result 2,494, Processing Time 0.024 seconds

Dosimetric comparison for Prostate VMAT of weight and photon energy change (전립선 암 입체적세기변조방사선치료 시 체형 및 에너지 변화에 따른 선량 평가)

  • Jo, Guang Sub;Kim, Min Woo;Baek, Min Gyu;Chae, Jong Pyo;Ha, Se Min;Lee, Sang Bong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.17-25
    • /
    • 2018
  • Purpose : To compare the radiation doses of prostate cancer patients according to changes in abdominal body shape and energy during Volumetric modulated arc therapy(VMAT). Materials and Methods : Seven patients with prostate cancer were enrolled in this study. VMAT treatment plan was established at 6, 10, and 15 MV while changing from -2.0 cm to 2 cm by 0.5 cm. Conformal index(CI), homogeneous index(HI), $D_{max}$, $D_{95%}$, $D_{50%}$ and $D_{2%}$ of PTV were examined in order to evaluate the change of dose in the target organ according to body shape change. Normal organ of the femoral head, rectum and bladder was analyzed to evaluate dose changes. Results : The dose of $D_{max}$ 6 MV in PTV increased to 107.2 % in 1.0 cm body shape reduction, and 10 MV and 15 MV dose increased to 107.1 % and 107.0 % in 1.5 cm body reduction, respectively. The dose of $D_{50%}$ 6 MV in PTV decreased to 99.64 % in 1.0 cm body shape increase, and in 10 MV and 15 MV dose decreased to 99.79 % and 99.97 % in 1.5 cm body increase, respectively. In 2.0 cm body type increase, the dose was decreased to 99.30 % and 99.52 %, respectively. Doses for rectum and bladder gradually increased with decreasing weight, and dose decreased with decreasing weight. 6 MV, and $V_{70Gy}$ at 10 MV increased from 11.50 % to 12.76 % when the external shape decreased by 2.0 cm. The bladder $V_{70Gy}$ also increased from 14.0 % to 15.2 %. It was also shown that the dose increased as the body weight decreased in the femoral head. Conclusion : In the treatment of VMAT, dose distribution can be changed according to the change of abdominal shape. SSD and CBCT were used to decrease the body shape by more than 1cm or more than 1.0 cm at 6 MV and the body shape by more than 1.5 cm or more than 1.5 cm at 10 MV or 15 MV. It is considered that a new treatment plan should be established through re-simulation.

  • PDF

Modeling on Chloride Diffusivity in Concrete with Isotropic and Anisotropic Crack (등방성 및 이방성 균열을 가진 콘크리트의 염화물 확산계수 모델링)

  • Lee, Hack-Soo;Bae, Sang-Woon;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.104-111
    • /
    • 2013
  • Deterioration is accelerated due to additional intrusion of chloride ion in crack width in cracked concrete. In this paper, modeling on equivalent diffusion coefficient in cracked concrete is performed for 1-D (Anisotropic) and 2-D (Isotropic) diffusion based on steady state condition. In the previous research, rectangular shape of crack was considered but the shape was modified to wedge shape with torturity. For verification of the proposed model, crack is induced in concrete sample and migration test in steady state is performed for 1-D diffusion. For 2-D diffusion, previous test results are adopted for verification. Through considering wedge shape of crack with torturity, diffusion coefficients in 1-D and 2-D diffusion are reduced, and the more reasonable prediction is obtained. The results from the proposed model with torturity of 0.10~0.15 are shown to be in the best agreement with the test results.

A Study on the Optimal Shape Design of 2-D Structures (2차원 구조물의 최적형상설계에 관한 연구)

  • 김홍건;양성모;노홍길;나석찬;유기현;조남익
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.2
    • /
    • pp.9-16
    • /
    • 2003
  • A strategy of the optimal shape design with FEA(Finite Element Analysis) for 2-D structure is proposed by comparing subproblem approximation method with first order approximation method. A cantilever beam with two different loading conditions, a concentrated load and an evenly distribute load, and truss structure with a concentrated loading condition are implemented to optimize the shape. It gives a good design strategy on the optimal truss structure as well as the optimal cantilever beam shape. It is found that the convergence is quickly finished with the iteration number below ten. Optimized shapes of cantilever beam and truss structure are shown with stress contour plot by the results of the subproblem approximation method and the first order approximation methd.

Real 3-D Shape Restoration using Lookup Table (룩업 테이블을 이용한 물체의 3-D 형상복원)

  • Kim, Kuk-Se;Lee, Jeong-Gi;Song, Gi-Beom;Kim, Choong-Won;Lee, Joon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.5
    • /
    • pp.1096-1101
    • /
    • 2004
  • The 3-D shape use to effect of movie, animation, industrial design, medical treatment service, education, engineering etc.... But it's not easy to make 3-D shape from the information of 2-D image. There are two methods in restoring 3-D video image through 2-D image; First the method of using a laser; Secondly the method of acquiring 3-D image through stereo vision. Instead of doing two methods with many difficulties, I figure out the method of simple 3-D image in this research paper. We present here a simple and efficient method, called direct calibration, which doesn't require any equations at all. The direct calibration procedure builds a lookup table(LUT) linking image and 3-D coordinates by a real 3-D triangulation system. The LUT is built by measuring the image coordinates of a grid of known 3-D points, and recording both image and world coordinates for each point; the depth values of all other visible points are obtained by interpolation.

Analysis of Body Characteristics of the US Women Aged from 26 to 45 Using 3D Body Scan Data

  • Kim, Dong-Eun
    • International Journal of Human Ecology
    • /
    • v.15 no.2
    • /
    • pp.13-21
    • /
    • 2014
  • This study investigated the anthropometric characteristics of US women 26 to 45 years of age to classify their body shapes into different categories. Research data was obtained from 2950 women 26 to 45 years of age who participated in the SizeUSA study. A 26 to 35 years of age group and a 36 to 45 years of age group were selected from the data pool. A total of 26 measurements important for body shape classification and for apparel product development was used for the data analysis. Five factors accounted for the US women's body measurements. The body shapes of women were categorized into 4 types: Obese A-Shape, Overweight Y-Shape, Obese H-Shape, and Normal S-Shape. Normal S-Shape was the most common body shape type. More women in the 26 to 35 years of age group had Normal S-Shape type than women in the 36 to 45 years of age group. More women in the 36 to 45 years of age group had Obese A-Shape, Overweight Y-Shape, and Obese H-Shape than women in the 26 to 35 years of age group. Younger US women, 26 to 35 years of age had slimmer body sizes with more balanced body shapes; however, older US women, 36 to 45 years of age had larger body sizes with more various body shapes.

Study on Springback Control in Reconfigurable Die Forming (가변금형 성형에서 탄성회복 제어 연구)

  • Ha, S.M.;Park, J.W.;Kim, T.W.
    • Transactions of Materials Processing
    • /
    • v.17 no.6
    • /
    • pp.393-400
    • /
    • 2008
  • Springback is one of the most difficult phenomena to analyze and control in sheet forming. Most of traditional springback control methods rely on experiences of skilled workers in industrial fields. This study focuses on prediction and generation of optimum reconfigurable die surfaces to control shape errors originated by springback. For this purpose, a deformation transfer function(DTF) was combined with finite element analysis of the springback in the 2D sheet forming model of elastic-perfectly plastic materials under the condition without blank holder. The results showed shape errors within 1% of the objective shape, which were comparable with analytically predicted errors. In addition to this theoretical analysis, DTF method was also applied to 2D and 3D sheet forming experiments. The experimental results showed ${\pm}0.5$ mm and ${\pm}1.0$ mm shape error distribution respectively, demonstrating that reconfigurable die surfaces were predicted well by the DTF method. Irrespective of material properties and sheet thickness, the DTF method was applicable not only to FEM simulation but also to 2D and 3D elasto-reconfigurable die forming. Consequently, this study shows that springback can be controlled effectively in the elasto-RDF system by using the DTF method.

The Database Development of 2-D and 3-D Hands Measurement for Improving Fitness of Gloves - Focused on the Classification of Hand Type and Analysis of 3-D Hand Shape - (장갑의 적합성 향상을 위한 손부의 2차원 및 3차원 계측정보 DB구축에 관한 연구 -손의 유형분석 및 3차원 입체형상 분석을 중심으로-)

  • 최혜선;김은경
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.910
    • /
    • pp.1300-1311
    • /
    • 2004
  • The aim of this study was to provide the 2 and 3 dimensional statistics requisite in the sizing system and design of gloves. The 64 2-dimensional static measurements were selected to provide information about hands. Participants in the study were 824 adults, aged between 18 and 64. To summarize the information from the measurement values, a Factor Analysis and a Cluster Analysis among multivariate analyses were performed. 3-D scanner was used for visual results of hand shape of each cluster. The results were as follows. Twenty-two items were used for the factor and cluster analysis in order to classify the adult hand shape. The variable quantities that are explained by a total of 3 factors amounted to under 79.37% of the variable quantities. The definition results of the factors related to the hands are as follows: Factor 1 is the horizontal dimension, the thickness of hand factor; Factor 2 is the height of the crotch; and Factor 3 is the vertical dimension of the hand. The adults' group hand was divided into 2 clusters according to a cluster analysis using factor scores. The characteristics according to hand type were as follows: Cluster 1 referred to high horizontal dimensions and thickness, rather small vertical dimensions and crotch height; and Cluster 2 represented the rather smaller horizontal dimensions and thickness but longer hand length than Type 1. To provide specific shape data of each cluster, 3-D scanner measurement was performed. 3-dimensional data base was developed for each cluster type and visual information was provided.

Preform Design by the Sensitivity Method (민감도법을 이용한 자유단조 공정의 예비성형체 설계)

  • 심현보;노현철;서의권
    • Transactions of Materials Processing
    • /
    • v.10 no.4
    • /
    • pp.294-301
    • /
    • 2001
  • The sensitivity method has been applied to find perform shape that results in the desired shape after foring. As a 2D example, initial shape of specimen for the cylinder shape without barrelling after forging has been found. The method is then applied to various shapes of 3D free forging and initial shapes of the corresponding specimens after forging have been found successfully The sensitivity method is proven to be an effective and accurate tool for the preform design.

  • PDF

A SHAPE OPTIMIZATION METHOD USING COMPLIANT FORMULATION ASSOCIATED WITH THE 2D STOKES CHANNEL FLOWS

  • Kim, Hongchul
    • Korean Journal of Mathematics
    • /
    • v.16 no.1
    • /
    • pp.25-40
    • /
    • 2008
  • We are concerned with a free boundary problem for the 2D Stokes channel flows, which determines the profile of the wing for the channel, so that the given traction force is to be distributed along the wing of the channel. Using the domain embedding technique, the free boundary problem is transferred into the shape optimization problem through the compliant formulation by releasing the traction condition along the variable boundary. The justification of the formulation will be discussed.

  • PDF

Phase Error Reduction for Multi-frequency Fringe Projection Profilometry Using Adaptive Compensation

  • Cho, Choon Sik;Han, Junghee
    • Current Optics and Photonics
    • /
    • v.2 no.4
    • /
    • pp.332-339
    • /
    • 2018
  • A new multi-frequency fringe projection method is proposed to reduce the nonlinear phase error in 3-D shape measurements using an adaptive compensation method. The phase error of the traditional fringe projection technique originates from various sources such as lens distortion, the nonlinear imaging system and a nonsinusoidal fringe pattern that can be very difficult to model. Inherent possibility of phase error appearing hinders one from accurate 3-D reconstruction. In this work, an adaptive compensation algorithm is introduced to reduce adaptively the phase error resulting from the fringe projection profilometry. Three different frequencies are used for generating the gratings of projector and conveyed to the four-step phase-shifting procedure to measure the objects of very discontinuous surfaces. The 3-D shape results show that this proposed technique succeeds in reconstructing the 3-D shape of any type of objects.