• Title/Summary/Keyword: 2-D shape

Search Result 2,492, Processing Time 0.034 seconds

4D Printing Materials for Soft Robots (소프트 로봇용 4D 프린팅 소재)

  • Sunhee Lee
    • Fashion & Textile Research Journal
    • /
    • v.24 no.6
    • /
    • pp.667-685
    • /
    • 2022
  • This paper aims to investigate 4D printing materials for soft robots. 4D printing is a targeted evolution of the 3D printed structure in shape, property, and functionality. It is capable of self-assembly, multi-functionality, and self-repair. In addition, it is time-dependent, printer-independent, and predictable. The shape-shifting behaviors considered in 4D printing include folding, bending, twisting, linear or nonlinear expansion/contraction, surface curling, and generating surface topographical features. The shapes can shift from 1D to 1D, 1D to 2D, 2D to 2D, 1D to 3D, 2D to 3D, and 3D to 3D. In the 4D printing auxetic structure, the kinetiX is a cellular-based material design composed of rigid plates and elastic hinges. In pneumatic auxetics based on the kirigami structure, an inverse optimization method for designing and fabricating morphs three-dimensional shapes out of patterns laid out flat. When 4D printing material is molded into a deformable 3D structure, it can be applied to the exoskeleton material of soft robots such as upper and lower limbs, fingers, hands, toes, and feet. Research on 4D printing materials for soft robots is essential in developing smart clothing for healthcare in the textile and fashion industry.

CONFUTER-AIDED CASTING DESIGN FOR IMPLANT TITANIUM SUPERSTRUCTURES (컴퓨터 시뮬레이션을 이용한 임플란트 상부 티타늄 구조물의 주조방안)

  • Oh Se-Wook;Lee Ho-Yong;Lee Keun-Woo;Shim Jun-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.4
    • /
    • pp.421-439
    • /
    • 2003
  • Statement of problem : It is difficult to obtain a good titanium casting body using the traditional sprue design because of high melting point of Ti, and the low fluidity and high reactivity of molten Ti. Purpose : A new sprue design for titanium casting bodies needs more trial and error. In order to decrease the number of trial and error, computer simulation(MAGMASOFT, Magmasoft Giessereitechnologie GmbH, Achen, Germany) was used to optimize sprue design in U-shaped implant superstructures. Material and method : Five kinds of sprue were examined for the design of the sprue former for titanium casting: Sprue design A(sprue length 4 mm, rectangular shape, 4 sprues), Sprue design B(sprue length 4 mm. round shape. radius 2 mm, 7 sprues), Sprue design C (sprue length 2 mm, round shape, radius 2 mm, 7 sprues). Sprue design D (sprue length 2 mm, cone shape, large radius 3mm. small radius 2mm, 7 sprues), and Sprue design E( sprue length 2 mm. one unit channel shape). Sprue design F(sprue length 2mm, one unit channel shape) was also examined for the design of the customized sprue former in the Biotan system(Schutz Dental Gmbh, Germany). The casting bodies were taken in Sprue design A, Sprue design D, Sprue design E, and Sprue design F in the Biotan casting system. The numerically predicted defects were compared with the experimental dental castings by the radiographic and sectional view observations. Results : 1. According to the result of computer simulation, turbulence during mold filling was decreased in the sequence of Sprue design F, Sprue design E, Sprue design D, Sprue design C, Sprue design B, and Sprue design A. 2. The calculated solidification time contours indicate that hot spot was moved from the casting body to the sprue button in the sequence of Sprue design A, Sprue design B, Sprue design C, Sprue design D, and Sprue design E. The filling pattern of Sprue design F was similar to that of Sprue design E. 3 The predicted filling pattern shows that less turbulence was found in the customized sprue former than in the standard sprue former. 4. According to the results of the radiographic and cross sectional observations, casting defects less than 1mm were found at the center of a casting body with Sprue design E and Sprue design F. However, larger casting defects of 4mm were found in a casting with Sprue design A. 5. The predicted casting porosity was similar to that of the real casting. Conclusion : One unit channel-type and customized sprue former can be recommended. Further research and developement of various sprue designs using computer simulation in necessary to optimize casting design, in order to reduce the formation of casting defects in implant titanuim super-structures.

Relationship between Hip Shape and Pattern Using 3D Body Model (3차원 인체모델을 이용한 엉덩이의 형태적 특징과 패턴과의 관계)

  • Cho, Young-Sook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.33 no.2
    • /
    • pp.266-275
    • /
    • 2009
  • Variations of individual hip shapes are a major obstacle in pattern making for fitness. The drafting method is used for pattern making in today's apparel industry. Whilst catering to a limited number of information such as waist and hip sizes, this method does not cater to variations in hip shape. This paper describes the analysis of hip shapes using 3D body model and tries to make sure the relationship between hip shape and pattern by calculating hip angle and dart amount. We achieved results in analyzing various hip shapes by extracting hip angle. Moreover, various hip shapes can be divided into three types(A, B and C) by the hip angle value($K_{sh}-K_{wsh}$). When we use computerized draping method to make a personalized pattern for a tigth skirt, we easily create complex dart lines automatically. Therefore we achieve the result of individual dart amount such as distance between dart lines and dart areas. C type of hip shape had short dart length, long distance between dart lines and a large amount of dart area. On the other hand, A type had long dart length, short distance between dart lines and small amount of dart area. B type had long length and long distance between dart lines and large amount of dart area. In traditional pattern making, distance between dart lines is usually proportional to amount of dart area because of similarity in dart line shape. In our pattern, there is no proportional relationship between dart line distance and dart area. This means that variations in hip shapes result in a wide variety of dart line curvature resulting in a wide range of dart area. By ensuring an accurate relationship between hip shape and pattern, it is possible to make patterns which result in clothing that not only fits well, but also exhibits other desirable properties.

2D Flat Pattern Development Using Simplified 3D Torso Model (3D 동체 모형을 이용한 2D 전개 패턴 연구)

  • Kim, Myoung-Su;Hong, Kyung-Hi
    • Journal of the Ergonomics Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.85-91
    • /
    • 2005
  • To understand the basic relationship between 3D curved surface model and 2D pattern, simplified torso model was generated by commercial CAD program (IDEAS). 3D torso model was then divided into different blocks and unfolded into a flat pattern as in ordinary works of clothing item design. As results, 2D pattern development of different part of 3D torso model was attempted and analyzed mathematically. It was found that different height, radius and tangent slope of 3D blocks resulted in different 2D pattern. The relationships between the shape parameters of 3D torso blocks and those of 2D patterns were analyzed using regression equations. Direct way of drawing a 2D pattern of corresponding 3D torso block was also illustrated for the convenience of pattern making using conventional measurements of upper/ lower radii and height of 3D torso block.

Preform Design for Forging by the Sensitivity Method (단조공정에서 민감도법을 이용한 예비 성형체 설계)

  • Shim H. B.;Noh H. C.;Son K. C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.180-185
    • /
    • 2001
  • The sensitivity method has been applied to find perform shape that results in the desired shape after forging. As a 2D example, initial shape of specimen for the cylinder shape without barrelling after forging has been found. The method is then applied to various shapes of 3D free forging and initial shapes of the corresponding specimens after forging have been found successfully. The sensitivity method is proven to be an effective and accurate tool for the preform design.

  • PDF

Study of Aerodynamic Design Optimization Using Genetic Algorithm (유전 알고리즘을 이용한 공력 형상 최적화 연구)

  • Kim S. W.;Kwon J. H.
    • Journal of computational fluids engineering
    • /
    • v.6 no.3
    • /
    • pp.10-18
    • /
    • 2001
  • Genetic Algorithm(GA) is applied to aerodynamic shape optimization and demonstrated its merits in global searching ability and the independency of differentiability. However, applications of GA are limited due to slow convergence rate, premature termination, and high computing costs. The present aerodynamic designs such as wing shape optimizations using GA have seldom been applied because of high computing costs. This paper has two objects; improvement of the efficiency of GA and application of GA into aerodynamic shape optimization for 2D and 3D wings. The study indicates that GA can be applied to aerodynamic design and its performance is comparable to traditional design methods.

  • PDF

Design of an Intelligent Polymer-Matrix-Composite Using Shape Memory Alloy (형상기억합금을 이용한 지능형 고분자 복합재료의 설계)

  • Jeong, Tae-Heon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1609-1618
    • /
    • 1997
  • Thermo-mechanical behaviors of polymer matrix composite(PMC) with continuous TiNi fiber are studied using theoretical analysis with 1-D analytical model and numerical analysis with 2-D multi-fiber finite element(FE) model. It is found that both compressive stress in matrix and tensile stress in TiNi fiber are the source of strengthening mechanisms and thermo-mechanical coupling. Thermal expansion of continuous TiNi fiber reinforced PMC has been compared with various mechanical behaviors as a function of fiber volume fraction, degree of pre-strain and modulus ratio between TiNi fiber and polymer matrix. Based on the concept of so-called shape memory composite(SMC) with a permanent shape memory effect, the critical modulus ratio is determined to obtain a smart composite with no or minimum thermal deformation. The critical modulus ratio should be a major factor for design and manufacturing of SMC.

3-Dimensional Sensor Array Shape Calibration in Near Field Environment (근거리 환경에서의 3차원 배열센서 형상 보정 기법)

  • Ryu, Chang-Soo;Eoh, Soo-Hae;Kang, Hyun-Koo;Rhyoo, Sang-Wook
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.4
    • /
    • pp.361-366
    • /
    • 2003
  • Most sensor array signal processing methods for multiple source localization require knowledge of the correct shape of array(the correct positions of sensors that consist array), because sensor position uncertainty can severely degrade the performance of array signal processing. In particular, it is assumed that the correct positions of the sensors are known, but the known positions may not represent the true sensor positions. Various algorithms have been proposed for 2-D sensor array shape calibration in far field environment. However, they are not available in near field. In this paper, 3-D sensor array shape calibration algorithm is proposed, which is available in near field.

  • PDF

Design of Nozzle Shape for UHV GCB to Improve the Dielectric Recovery Characteristics between Electrodes (극간절연회복성능 향상을 위한 초고압GCB의 노즐형상설계)

  • Song, K.D.;Park, K.Y.;Shin, Y.J.;Kweon, K.Y.;Song, W.P.
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.479-481
    • /
    • 1995
  • This paper presents a method witch tan improve the dielectric recovery characteristics of UHV class gas circuit breakers by changing the nozzle shape. To calculate the dielectric recovery voltage between electrodes, the flow field and electric field analysis in a 362kV model interrupter has been performed with the commercial programs, RAMPANT and FLUX2D, respectively. As a result, we found that the nozzle shape affects the characteristics of dielectric recovery between electrodes and obtained great improvement of it by the changing the downstream nozzle shape.

  • PDF

A Lubrication Analysis of Gas Mechanical Face Seals using a High-Order Shape Function (고차 형상함수를 이용한 가스 미케니컬 페이스 시일의 윤활해석)

  • 이안성;양재훈;최동훈
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.204-211
    • /
    • 2001
  • For the treatment of high compressibility number in the Reynolds equation, a new class of exponential high-order shape functions has been recently introduced in the literatures. In this paper a FE lubrication analysis method of high speed gas mechanical face seals is developed, implementing these shape functions. Their validity and usefulness are presented using 1-D gas bearing models. And a validation of developed 2-D analysis code is shown with a gas flat and spiral groove face seal models.

  • PDF