• 제목/요약/키워드: 2-Chlorophenol(2CP)

검색결과 27건 처리시간 0.027초

Ferrate(VI)를 이용한 2-chlorophenol의 분해특성 연구 (Degradation of 2-chlorophenol by Ferrate(VI))

  • 최혜민;권재현;김일규
    • 상하수도학회지
    • /
    • 제25권1호
    • /
    • pp.63-74
    • /
    • 2011
  • The degradation characteristics of 2-chlorophenol(2-CP) by Ferrate(VI) were studied. The degradation efficiency of 2-CP in aqueous solution was investigated at various values of pH, Fe(VI) dosage, initial concentration and aqueous solution temperature. The maximum degradation efficiencies of 2-CP were obtained at pH 7.0 and aqueous solution temperature of 25$^{\circ}C$. The degradation efficiency was proportional to dosage of Fe(VI). Also, the initial rate constant of 2-CP degradation increased with decreasing of the 2-CP initial concentration. In addition, the degradation pathway study for 2-CP was conducted with GC-MS analysis. Acetic acid, formic acid, benzaldehyde and benzoic acid were identified as reaction intermediates of the 2-CP degradation by Ferrate(VI).

과산화수소 연속주입식 광펜톤산화공정에 의한 4-염화페놀 분해연구 (Degradation of 4-Chlorophenol by a Photo-Fenton Process with Continuous Feeding of Hydrogen Peroxide)

  • 김일규
    • 상하수도학회지
    • /
    • 제27권1호
    • /
    • pp.31-38
    • /
    • 2013
  • The degradation of 4-chlorophenol(4-CP) by various AOPs(Advanced Oxidation Processes) with continuous feeding of $H_2O_2$, including the ultraviolet/hydrogen peroxide, the Fenton and the photo-Fenton process has been investigated. The photo-Fenton process showed the highest removal efficiency for degradation of 4-chlorophenol than those of other AOPs including the Fenton process and the combined UV process with continuous feeding of $H_2O_2$. In the photo-Fenton process, the optimal experimental condition for 4-CP degradation was obtained at pH 3. Also the 4-CP removal efficiency increased with decreasing of the initial 4-CP concentration. 4-chlorocatechol and 4-chlororesorcinol were identified as photo-Fenton reaction intermediates, and the degradation pathways of 4-CP in the aqueous phase during the photo-Fenton reaction were proposed.

Mono-와 Di-Chlorophenol에 적응시킨 혐기성 저질의 탈염소 특성 (Regiospecificity of Reductive Dechlorination of Chlorophenols in Mono- and Di-Chlorophenol Adapted Anoxic Sediments)

  • 공인철;이석모
    • 한국환경과학회지
    • /
    • 제3권1호
    • /
    • pp.65-76
    • /
    • 1994
  • 자연호소의 혐기성 저질을 특정한 chlorophenol(CP)에 적응시킨 후 다른 구조물 가진 CP에 대한 탈염소 특성을 검토하였다. CP에 노출되지 않는 혐기성 저질에서는 mono-CP의 경우 ortho > meta > para-염소의 손으로 di-CP의 경우는 ortho > par > meta- 염소의 순서로 짧은 지체기를 거친 후 탈염소가 발생하였다. Mono-CP 중 2-CP에 적응된 저질은 4-CP와 3,4DCP를 제외하고, 3-CP에 적응시킨 저질은 4-CP를 제외한 모든 시험물질에 대하여 지체기 없이 탈염소 특성을 나타내었다. DCP에 적응된 모든 저질은 2-CP, 2,3,-, 2,4-, and 3,4-DCP를 지체기 없이 탈염소가 발생하지 않았다. 이 결과에서 볼 때 mono-와 di-CP를 탈염소시키는 혐기성 미생물의 종류가 다양함을 알 수 있다.

  • PDF

광펜톤 반응에 의한 수중 2-클로로페놀 분해특성연구 (Degradation of 2-Chlorophenol in the Aqueous Phase by a Photo-Fenton Process)

  • 김일규
    • 상하수도학회지
    • /
    • 제26권6호
    • /
    • pp.779-786
    • /
    • 2012
  • The degradation of 2-chlorophenol(2-CP) by various AOPs(Advanced Oxidation Processes) including the photo-Fenton process has been examined. In sole $Fe^{2+}$, UV or $H_2O_2$ process without combination, low removal efficiencies have been achieved. But the photo-Fenton process showed higher removal efficiency for degradation of 2-chlorophenol than those of other AOPs including the Fenton process and the UV processes. In the photo-Fenton process, the optimal experimental conditions of 2-chlorophenol degradation were obtained at pH 3 and the $Fe^{2+}/H_2O_2$molar ratio of 1. Also the 2-chlorophenol removal efficiency increased with decreasing of the initial 2-chlorophenol concentration. 3-chlorocatechol and chlorohydroquinone were identified as photo-Fenton reaction intermediates, and a degradation pathway of 2-chlorophenol in the aqueous phase during the photo-Fenton reaction was proposed.

2-Chlorophenol에 오염된 토양을 현장에서 처리하기 위한 Ozone-Venting 공정

  • 김정선;하현정;김현승;김일규
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 총회 및 춘계학술발표회
    • /
    • pp.322-325
    • /
    • 2003
  • The feasibility of treating 2-chlorophenol (2CP) contaminated soils with ozone venting was investigated in this research. Adding ozone to the existing air-venting process provides an alternative to achieve a complete in-situ treatment by oxidizing the contaminant in the process. A column study with artificial soil was used to simulate the venting process. Ozone concentrations at 2.4, 7.6 and 19.4 mg/L, and flow rates at 100 and 150 mL/min were used. The reaction times were 10, 20, 50, and 60 minutes. Blank samples using air venting were also run for comparison. It is obvious that ozone-venting had a much faster removal rate than air-venting. As higher concentration of ozone is applied, the reaction rate increased significantly. As higher concentration was applied, the flux of ozone to the liquid film increased. This also increased the removal rate of 2CP and therefore the breakthrough curve came out earlier.

  • PDF

Chlorobenzene 및 Chlorinated Phenol류의 분해에 미치는 초음파의 응용 (Application of Ultrasounds for the Removal of Chlorobenzene and Chlorinated Phenols in Water)

  • 우영억;황규탁
    • 환경위생공학
    • /
    • 제15권4호
    • /
    • pp.35-43
    • /
    • 2000
  • Aqueous solutions of chlorobenzene and chlorinated phenols were exposed to 200kHz ultrasound with a power of $6.0W/\textrm{cm}^2$ per unit volume on sonochemical reactor under ambient temperature and pressure conditions. The concentration of chlorobenzene and chlorinated phenols decreased with ultrasound, indicating first-order kinetics. Degradation rate constants are calculated from the slope of plots. The order of the rate constants is as follows : 2-chlorphenol(2-CP)$\leq$ 4-chlorophenol(4-CP)<3-chlorophenol(3-CP)$5.63~9.96({\times}10^{-2})min^{-1}$ under argon. The degradation was suppressed by the addition of t-BuOH and the suppressed yield was agreed with their reactivity for hydroxy radical. The main products of these systems were formic acid, acetic acid, small amount of methane and inorganic carbon forms as carbon dioxide, carbon monoxide in sonolysis of chlorinated phenols, and also these results agreed with change of TOC.

  • PDF

다이옥신 전구물질인 Chlorophenol 의 열분해에 관한 연구 (The Study of Pyrolysis Characteristics of Dioxin Precursor Chlorophenol)

  • 정태섭;김종국;김경수;윤병석
    • 대한환경공학회지
    • /
    • 제22권1호
    • /
    • pp.179-185
    • /
    • 2000
  • 도시쓰레기 소각로에서 다이옥신류의 생성과 대기로의 방출을 최소화하기 위해 소각로의 후 연소 영역에서 다이옥신 전구물질의 원인이 되는 클로로페놀(이하 CP로 표기)의 거동에 대해 검토하였다. 전기관상로를 이용하여 온도조건 $300{\sim}500^{\circ}C$ 에서 CP을 주입하고 질소가스를 이용하여 반응시간을 조절하였으며 CP의 이성질체별 연소에 필요한 산소량은 계산된 실험식을 이용하여 주입하였다. 반응기내의 공간속도가 60~80/초의 조건에서 Mo-V계 촉매를 사용하여 촉매유무에 따른 CP의 분해 효율을 살펴보았다. 무촉매 열분해시 mono-CP은 74~80%, di-CP은 55~66%, tri-CP은 50~58%의 효율을 보였고, Mo-V계 촉매가 존재할 때 mono-CP은 90~99.9%, di-CP은 86~97%, tri-CP은 76~99%의 효율을 나타내 Mo-V계 촉매를 사용함으로써 약 20~30%의 효율이 증가함을 확인할 수 있다.

  • PDF

Two Different Pathways (a Chlorocatechol and a Hydroquinone Pathway) for the 4-Chlorophenol Degradation in Two Isolated Bacterial Strains

  • Bae, Hee-Sung;Rhee, Sung-Keun;Cho, Young-Gyun;Hong, Jong-Ki;Lee, Sung-Taik
    • Journal of Microbiology and Biotechnology
    • /
    • 제7권4호
    • /
    • pp.237-241
    • /
    • 1997
  • Two isolated strains, Comamonas testosteroni CPW301 and Arthrobacter ureafaciens CPR706, were able to use 4-chlorophenol (4-CP) as a sole carbon and energy source. CPW301 was found to degrade 4-CP via a meta-cleavage pathway in which the chloro-substituent was eliminated even when 4-chlorocatechol was cleaved by the catechol 2, 3-dioxygenase. In contrast, CPR706 removed chloride from 4-CP prior to the ring-fission reaction, producing hydroquinone as a transient intermediate during 4-CP degradation. CPR706 exhibited much higher tolerance for 4-CP than CPW301, which was indicated by the maximum degradable concentration and degradation rate.

  • PDF

A kinetic study of 4-chlorophenol biodegradation by the novel isolated Bacillus subtilis in batch shake flask

  • Sandhibigraha, Sudhansu;Chakraborty, Sagnik;Bandyopadhyay, Tarunkanti;Bhunia, Biswanath
    • Environmental Engineering Research
    • /
    • 제25권1호
    • /
    • pp.62-70
    • /
    • 2020
  • Here in this work, a 4-chlorophenol (4-CP)-degrading bacterial strain Bacillus subtilis (B. subtilis) MF447840.1 was isolated from the drain outside the Hyundai car service center, Agartala, Tripura, India. 16S rDNA technique used carried out for genomic recognition of the bacterial species. Isolated bacterial strain was phylogenetically related with B. subtilis. This strain was capable of breaking down both phenol and 4-CP at the concentration of 1,000 mg/L. Also, the isolated strain can able to metabolize five diverse aromatic molecules such as 2-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol, 4-nitrophenol, and pentachlorophenol for their growth. An extensive investigation was performed to portray the kinetics of cell growth along with 4-CP degradation in the batch study utilizing 4-CP as substrate. Various unstructured models were applied to evaluate the intrinsic kinetic factors. Levenspiel's model demonstrates a comparatively enhanced R2 value (0.997) amongst every analyzed model. The data of specific growth rate (μ), saturation constant (KS), and YX/S were 0.11 h-1, 39.88 mg/L, along with 0.53 g/g, correspondingly. The isolated strain degrades 1,000 mg/L of 4-CP within 40 h. Therefore, B. subtilis MF447840.1 was considered a potential candidate for 4-CP degradation.

PHOTOCATALYTIC DEGRADATION OF 2-CHLOROPHENOL USING TiO₂THIN FILMS PREPARED BY CHEMICAL VAPOR DEPOSITION AND ION BEAM SPUTTERING METHOD

  • Jung, Oh-Jin;Kim, Sam-Hyeok;Jo, Ji-Eun;Hwang, Chul-Ho
    • Environmental Engineering Research
    • /
    • 제7권4호
    • /
    • pp.227-237
    • /
    • 2002
  • Chemical vapor deposition (CVD), ion beam sputtering (IBS) and sol-gel method were used to prepare TiO$_2$ thin films for degradation of hazardous organic compounds exemplified by 2-chlorophenol (2-CP). The influence of supporting materials and coating methods on the photocatalytic activity of the TiO$_2$ thin films were also studied. TiO$_2$ thin films were coated onto various supporting materials including steel cloth (SS), copper cloth, quartz glass tube (QGT), and silica gel (SG). Results indicate that SS (37 μm)- TiO$_2$ thin film prepared by IBS method improves the photodegradation of 2-CP. Among all supporting materials studied, SS(37 μm) is found to be the best support.