• Title/Summary/Keyword: 2 phase motor

Search Result 614, Processing Time 0.023 seconds

Analysis of 3-phase Induction Motor considering Current Regulator using DQ Transformation with Matrix Vector

  • Hong, Sun-Ki;Na, Yoo-Chung
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.2
    • /
    • pp.116-120
    • /
    • 2014
  • 3-phase Induction machines are being used in industry and dq transformation from 3 phase of a, b, c is commonly used to analyze these machines. The equivalent circuits of d and q axis are however generally cross coupled and not simple to analyze. In this study, an analysis method of 3ph induction motor considering current regulator using dq transformation and matrix vector is proposed and it can explain the 3ph induction motor physically. This model does not need the separating process of d and q components. With this technique, the model becomes simple, is easy to understand in physical, and can get the same results with those from the other dq models. These simulation results of the proposed model are compared with those of other models for the conformation of the proposed method.

Genetic Algorithm Based Design Optimization of a Six Phase Induction Motor

  • Fazlipour, Z.;Kianinezhad, R.;Razaz, M.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1007-1014
    • /
    • 2015
  • An optimally designed six-phase induction motor (6PIM) is compared with an initial design induction motor having the same ratings. The Genetic Algorithm (GA) method is used for optimization and multi objective function is considered. Comparison of the optimum design with the initial design reveals that better performance can be obtained by a simple optimization method. Also in this paper each design of 6PIM, is simulated by MAXWELL_2D. The obtained simulation results are compared in order to find the most suitable solution for the specified application, considering the influence of each design upon the motor performance. Construction a 6PIM based on the information obtained from GA method has been done. Quality parameters of the designed motors, such as: efficiency, power losses and power factor measured and optimal design has been evaluated. Laboratory tests have proven the correctness of optimal design.

Single Phase Switched Reluctance Motor Optimum Design Using Response Surface Methodology and Finite Element Method (반응표면법과 유한요소법을 이용한 단상 스위치드 릴럭턴스 전동기의 최적 설계)

  • Lim, Seung-Bin;Choi, Jae-Hak;Park, Jae-Bum;Son, Yeoung-Gyu;Lee, Ju
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.12
    • /
    • pp.596-607
    • /
    • 2006
  • This paper presents Single Phase Switched Reluctance Motor (SPSRM) optimum design for vacuum cleaners using Response Surface Methodology (RSM) to determine geometric parameters, and the 2-D Finite Element Method (FEM) has been coupled with the circuit equations of the driving converter. Additionally, an optimum process for SPSRM has been proposed and peformed with geometric and electric parameters thereby influencing the inductance variation and effective torque generation as design variables. SPSRM performances have also been analyzed to determine an optimal design model for maximized efficiency at high power factor. In order to confirm the propriety of the Finite Element Method and motor performance calculation, simulation waveform and experiment waveform for motor voltage and current were compared.

Improved Characteristic Analysis of a 5-phase Hybrid Stepping Motor Using the Neural Network and Numerical Method

  • Lim, Ki-Chae;Hong, Jung-Pyo;Kim, Gyu-Tak;Im, Tae-Bin
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.11B no.2
    • /
    • pp.15-21
    • /
    • 2001
  • This paper presents an improved characteristic analysis methodology for a 5-phase hybrid stepping motor. The basic approach is based on the use of equivalent magnetic circuit taking into account the localized saturation throughout the hybrid stepping motor. The finite element method(FEM) is used to generate the magnetic circuit parameters for the complex stator and rotor teeth and airgap considering the saturation effects in tooth and poles. In addition, the neural network is used to map a change of parameters and predicts their approximation. Therefore, the proposed method efficiently improves the accuracy of analysis by using the parameter characterizing localized saturation effects and reduces the computational time by using the neural network. An improved circuit model of 5-phase hybrid stepping motor is presented and its application is provided to demonstrate the effectiveness of the proposed method.

Development of Single-phase Brushless DC Motor with Outer Rotor for Ventilation Fan (환풍기용 외전형 단상 브러시리스 직류전동기 개발)

  • Park, Yong-Un;Jeong, Hak-Gyun;Cho, Ju-Hee;So, Ji-Yong;Jung, Dong-Hwa;Kim, Dae-Kyong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.8
    • /
    • pp.36-41
    • /
    • 2013
  • This paper is development of single-phase brushless DC motor with outer rotor for ventilation fan. Cogging torque causes the noise vibration to greatest impact on ventilation fan. Asymmetric notches are applied to tapered-teeth for cogging torque reduction of single-phase brushless DC motor. Initial model is notchless and proposed model is applied 2 asymmetric notches. The proposed method is proved motor characteristic through finite element analysis(FEA). Also, experimental results verify that the proposed model considerably reduces cogging torque and have the good sound quality in ventilation system.

Characteristic Analysis of Capacitor-Run Single-Phase Pole Change Induction Motor Considering Harmonics (고조파를 고려한 극변환(2/4극) 콘덴서 구동형 단상유도전동기 특성해석)

  • Nam, Hyuk;Hong, Jung-Pyo;Jeong, Seung-Kyu;Jung, Tae-Uk;Baek, Seung-Myun
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.907-909
    • /
    • 2001
  • This paper proposes the analysis method for the pole change motor that is a capacitor-run single-phase induction motor. As the Magneto motive force(MMF) at 2-role becomes severe distortion, it is necessary to consider the harmonics for the characteristic analysis of the motor. Therefore, the performance of motor is analyzed by equivalent circuit considering the harmonic components. The validity of the proposed analysis method for the pole change motor is verified through simulations and experimental results.

  • PDF

Fuzzy Logic Speed Controller of 3-Phase Induction Motors for Efficiency Improvement

  • Abdelkarim, Emad;Ahmed, Mahrous;Orabi, Mohamed;Mutschler, Peter
    • Journal of Power Electronics
    • /
    • v.12 no.2
    • /
    • pp.305-316
    • /
    • 2012
  • The paper presents an accurate loss model based controller of an induction motor to calculate the optimal air gap flux. The model includes copper losses, iron losses, harmonic losses, friction and windage losses, and stray losses. These losses are represented as a function of the air gap flux. By using the calculated optimal air gap flux compared with rated flux for speed sensorless indirect vector controlled induction motor, an improvement in motor efficiency is achieved. The motor speed performance is improved using a fuzzy logic speed controller instead of a PI controller. The fuzzy logic speed controller was simulated using the fuzzy control interface block of MATLAB/SIMULINK program. The control algorithm is experimentally tested within a PC under RTAI-Linux. The simulation and experimental results show the improvement in motor efficiency and speed performance.

Switching Noise and Conducted Noise of Two-Phase Space Vector SRP based Induction Motor Drives with Double Zero Vector Modes (2중 영벡터 모드를 갖는 2상 공간벡터 SRP기반 유도모터 구동시스템의 스위칭 소음과 전도 노이즈)

  • Kim, J.G.;Lim, Y.C.;Jung, Y.G.
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.109-113
    • /
    • 2004
  • In case while modulation index (M) is more than 0.7, the spectrum of motor voltage and current of a conventional two-phase SRP scheme are not reduced considerably. To solve the problems of a conventional two-phase SRP, this paper proposes a two-phase SRP(DZSRP) with double zero vector mode which zero vector is selected as V(111) in case of M $\geq$ 0.7, and zero vector is selected as V(000) if M < 0.7. For the validity of the proposed method, a 16 bit micro-controller C167 was used and the experiments were conducted with the 1.5kw induction motor under load condition. And the experimental results show that the switching noise spectrum for all the M are spread to a wide band area. Also the switching noise and conducted noise are discussed.

  • PDF

Characteristic Analysis and Design of Switched Reluctance Motor for the Improved 2-phase Snail-earn Type Fan Motor

  • Lee, Ji-Young;Lee, Geun-Ho;Hong, Jung-Pyo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.1
    • /
    • pp.1-5
    • /
    • 2004
  • This paper deals with the design and analysis of a 2-phase Switched Reluctance Motor (SRM) used for the cooling fan motor of a refrigerator. To reduce the dead zone and improve the efficiency, the snail-earn type rotor pole and the asymmetric stator pole are investigated. For the optimal shape design, the performances of each model are obtained from numerical calculation results by 2D time-stepping finite element method (FEM) coupled with circuit equations. The accuracy of analysis is verified by comparing the analysis results with experimental data. According to the investigation results, improved shapes of stator and rotor poles are proposed.