• Title/Summary/Keyword: 2차 좌굴

Search Result 51, Processing Time 0.026 seconds

Case Study for Buckling Design of Temporary Bridges using System Buckling Analysis (시스템좌굴 해석법을 이용한 라멘형가교 주요부재의 좌굴설계에 관한 사례 연구)

  • Kyung, Yong Soo;So, Byoung Hoon;Bang, Jin Hwan;Kim, Moon Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.1
    • /
    • pp.87-98
    • /
    • 2007
  • Generally, main girders and steel piers of temporary bridges form the steel rahmen structure. In this study, the rational stability design procedure for main members of temporary bridges was presented using a 3D system buckling analysis and second-order elastic analysis. Six types of temporary bridges, which can be designed and fabricated in reality, were chosen and the buckling design for them was performed in consideration ofload combinations of dead and live loads, thermal load, and wind load. Effective buckling length of steel piers, transition of 3D buckling modes, and effects of second-order analysis were investigated through a case study involving six temporary bridges.

A Study of the Buckling/plastic Collapse Behaviour of Ship Plates with Secondary Buckling (2차좌굴을 포함하는 선체판의 탄소성거동에 관한 연구)

  • Ko, Jae-Yong;Lee, Don-Chul;Yu, Young-Hun;Cho, Young-Tae;Park, Sung-Hyeon
    • Journal of Navigation and Port Research
    • /
    • v.26 no.1
    • /
    • pp.50-54
    • /
    • 2002
  • The plate bucking is very important design criteria when the ship is composed of high tensile steel plates. The structures under the action of excessive exhibit local failure associated with bucking until they reach the ultimate limit state as a whole. Precise assessment of the behaviour of plate above primary buckling load is important. In this connection, series of elastic plastic large deflection analyses are performed on rectangular plates with aspect ratio 1.4 applying the finite element method. In this paper, the buckling/plastic collapse behavior of ship plates with secondary buckling is investigated. It has found that the other deflection componentes also increase with the increase of compressive load above the primary buckling load.

A Study on the Snap-through Behaviour of Plate Elements due to the Initial Deflection Shape (초기처짐형상에 따른 판부재의 천이거동에 관한 연구)

  • Park, Joo-Shin;Lee, Kye-Hee;Ko, Jae-Yong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.1
    • /
    • pp.13-20
    • /
    • 2005
  • Since High Tensile Steel has been widely used to thin plate on the steel structure and marine structure, It has increased possibility of buckling. Especially, initial deflection of ship structure is mainly caused by heat processing of welding or cutting etc. This initial deflection has negative effect to thin plate, which would incur a complicated nonlinear behavior accompanied with secondary buckling. If idealized initial deflection is considered in early marine structure design of secondary buckling, accuracy and reliability will be improved considerably. The measurement data of initial deflection from experiment is applied to finite element series analysis. For FEA(ANSYS), Applied nonlinear buckling analysis is used by Newton-Raphson method & Arc-length method included in this program.

A Study on the Geometric Nonlinear Behaviour of Ship Plate by Energy Method (에너지법에 의한 선체판의 기하학적 비선형거동에 관한 연구)

  • Jae-Yong Ko
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.2
    • /
    • pp.94-104
    • /
    • 1999
  • Plate buckling is very important design criteria when the ship is composed of high tensile steel plates. In general, the plate element contributes to inplane stiffness against the action of inplane load. If the inplane stiffness of the plating decreases due to buckling including the secondary buckling, the flexural rigidity of the cross section of a ship's hull also decreases. In these cases, the precise estimation of plate's behaviour after buckling is necessary, and geometric nonlinear behaviour of isolated plates is required for structural system analysis. In this connection, the author investigated the geometric nonlinear behaviour of simply supported rectangular plates under uniaxial compression in the longitudinal direction in which the principle of minimum potential energy method is employed. Based on the energy method, elastic large deflection analysis of isolated palate is performed and simple expression are derived to discuss the bifurcation paint type buckling and limit point type buckling.

  • PDF

A Study on the Large Deflection Behavior of Ship Plate with Secondary Buckling (2차좌굴을 포함하는 선체판의 대변형거동에 관한 연구)

  • 고재용
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.565-573
    • /
    • 1999
  • Hihg Tensile Steel enables to reduce the plate thickness comparing to the case when Mild Steel is used. From the economical view points this is very preferable since the reduction in the hull weight. however to use the High Tensile Steel effectively the plate thickness may become thin so that the occurrence of buckling is inevitable and design allowing plate buckling may be necessary. If the inplane stiffness of the plating decreases due to buckling the flexural rigidity of the cross sect6ion of a ship's hull also decreases. This may lead to excessive deflection of the hull girder under longitudinal bending. In these cases a precise estimation of plate's behavior after buckling is necessary and nonliner analysis of isolated and stiffened plates is required for structural sys-tem analysis. In this connection this paper discusses nonlinear behaviour of thin plate under thrust. Based on the analytical method elastic large deflection analysis of isolated plate is perform and simple expression are derived to evaluated the inplane rigidity of plates subjected to uniaxial compression.

  • PDF

Sensitivity of the Continuous Welded Rail and the Fastener on the Track Stability (궤도 안정성에 대한 장대레일과 체결구의 민감도)

  • Han, Sang Yun;Park, Nam Hoi;Lim, Nam Hyoung;Kang, Young Jong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.719-726
    • /
    • 2006
  • The use of CWR track not only reduces the track maintenance cost, but increase the life cycle of track components. Therefore, the use of the CWR track has increased consistently in the worldwide. As the use of CWR increases in track structures, derailing disasters associating with track buckling also increase in great numbers due to high compressive thermal stress in the summer. Among many CWR parameters, the influence of the sectional properties of the rail was investigated on the stability of CWR track in this study. Also, the sensitivity of the broken fastener and the stiffness of the fastener system such as the translational and rotational stiffness was investigated.

Inelastic Buckling Behavior of Simply Supported I-Beam under Transverse Loading (횡방향 하중을 받는 I형강 단순보의 비탄성 좌굴거동)

  • Lee, Dong Sik;Oh, Soon Taek
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.155-167
    • /
    • 2004
  • In this paper, the inelastic buckling behavior of the beam under uniform bending was investigated using the energy-based method, which can tackle problems in fourth order eigenvalue. The pattern of residual stress was not available to satisfy the I-sections manufactured in Korea. however; therefore, the well-known polynomial and simplified pattern of residual stress was adopted in this study. The inelastic lateral-distortional buckling behavior of the beam with I-sections manufactured in Korea was investigated. The study was then extended to the inelastic lateral-torsional buckling of the beam by minimizing the out-of-plane web distortion. The inelastic lateral-torsional buckling results obtained in this paper were compared with the prediction of allowable bending stress given in the Korean steel designers' manual (1995). Results showed that the importance of inelastic lateral-distortional buckling did not arise for beams under uniform bending. Likewise, the design method in KSDM (1995) was proven to bo too conservative for intermediate and short spans of beams without intermediate bracing.

Buckling Analysis of Thin-Walled Laminated Composite I-Beams Including Shear Deformation (전단변형을 고려한 적층복합 I형 박벽보의 좌굴해석)

  • Back, Sung Yong;Lee, Seung Sik;Park, Yong Myung
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.575-584
    • /
    • 2006
  • In this paper, a shear-flexible finite element model is developed for the buckling analysis of axially loaded, thin-walled composite I-beams. Based on an orthogonal Cartesian coordinate system, the displacement fields are defined using the first-order shear-deformable beam theory. The derived element takes into account flexural shear deformation and torsional warping deformation. Three different types of beam elements, namely, the two-noded, three-noded, and four-noded beam elements, were developed to solve the governing equations. An inverse iteration with shift eigenvalue solution was used to solve the resulting linearized buckling problem. A parametric study was conducted to show the importance of shear flexibility and fiber orientation on the buckling behavior of thin-walled composite beams. A good agreement was obtained among the proposed shear-flexible model, other results available in literature, and the finite element solution.

Critical Buckling Temperatures of Anisotropic Laminated Composite Plates considering a Higher-order Shear Deformation (고차전단변형을 고려한 비등방성 적층복합판의 임계좌굴온도)

  • Han, Seong Cheon;Yoon, Seok Ho;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.2 s.35
    • /
    • pp.201-209
    • /
    • 1998
  • The presence of elevated temperature can alter significantly the structural response of fibre-reinforced laminated composites. A thermal environment causes degradation in both strength and constitutive properties, particularly in the case of fibre-reinforced polymeric composites. Furthermore, associated thermal expansion, either alone or in combination with mechanically induced deformation, can result in buckling, large deflections, and excessively high stress levels. Consequently, it is often imperative to consider environmental effects in the analysis and design of laminated systems. Exact analytical solutions of higher-order shear deformation theory is developed to study the thermal buckling of cross-ply and antisymmetric angle-ply rectangular plates. The buckling behavior of moderately thick cross-ply and antisymmetric angle-ply laminates that are simply supported and subject to a uniform temperature rise is analyzed. Numerical results are presented for fiber-reinforced laminates and show the effects of ply orientation, number of layers, plate thickness, and aspects ratio on the critical buckling temperature and compared with those obtained using the classical and first-order shear deformation theory.

  • PDF

Nonlinear Transient Heat Transfer Analysis Based on LANCZOS Coordinates (LANCZOS 알고리즘에 기초한 비선형 트랜지언트 열전달 해석)

  • Im, Chang Kyun;Chang, Sung Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.2 s.35
    • /
    • pp.317-326
    • /
    • 1998
  • This paper describes a reduced finite element formulation for nonlinear transient heat transfer analysis based on Lanczos Algorithm. In the proposed reduced formulation all material nonlinearities of irradiation boundary element are included using the pseudo force method and numerical time integration of the reduced formulation is conducted by Galerkin method. The results of numerical examples demonstrate the applicability and the accuracy of the proposed method for the nonlinear transient heat transfer analysis.

  • PDF