• Title/Summary/Keyword: 2차 균열

Search Result 221, Processing Time 0.027 seconds

A Simple Model of Shrinkage Cracking Development for Kaolinite (수축 균열 발달 과정을 위한 단순 모델)

  • Min, Tuk-Ki;Nhat, Vo Dai
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.9
    • /
    • pp.29-37
    • /
    • 2007
  • The experiments have been conducted on Kaolinite in laboratory to investigate the development of shrinkage cracking and propose a simple model. Image analysis method consisting of control point selection(CPS) technique is used to process and analyze images of soil cracking captured by a digital camera. The distributions of crack length increment and crack area increment vary as a three-step process. These steps are regarded as stages of soil cracking. They are in turn primary crack, secondary crack and shrinkage crack stages. In case of crack area, the primary and secondary stages end at normalized gravimetric water content(NGWC) of 0.92 and 0.70 for different specimen thicknesses respectively. In addition, the primary stage in case of crack length also ends at NGWC of 0.92 while the secondary stage stops at NGWC of 0.79, 0.82, and 0.85 for the sample thicknesses of 0.5, 1.0, and 2.0 cm respectively Based on the experimental results, the distributions of crack length increment and crack area increment appear to be linear with a decrease of NGWC. Therefore, the development of shrinkage cracking is proposed typically by a simple model functioned by a combination of three linear expressions.

Crack Extension in Anisotropic Solids Subjected to Uniaxial Load (단축하중을 받는 이방성체내 균열의 진전)

  • 임원균;최승룡;안현수
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.2
    • /
    • pp.161-169
    • /
    • 1999
  • 이방성체의 평면내 직선균열에 대한 균열선단부근의 응력과 변위의 분포는 어떠한 균열체의 형상 및 하중조건에 대해서도 응력확대계수라는 하나의 매개변수로서 나타낼 수 있다고 하는 것이 파괴역학에서 보편화되어 있다. 그러나 많은 경우에 있어서 급수전개식의 이어지는 항은 정량적으로 중요하다. 따라서 본 연구에서는 이러한 항을 유도하고 이것이 균열진전방향에 미치는 영향에 대하여 검초하였다. 이를 위하여 단축하중을 받는 직방성균열체의 해석을 수행하며 재료는 균질이방성체라고 가정하였다. 급수전개식에서 2차항의 영향을 고려하기 위하여 균열선단에서의 응력의 분포를 재해석하였으며, 2차항의 사용은 정확한 균열진전방향의 결정을 위해서 매우 중요함을 보였다. 초기균열진전각도의 결정을 위해서 수직응력비이론을 적용하였다.

  • PDF

프락탈 모델을 적용한 우리나라 균열 암반 대수층의 수리상수

  • 함세영
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 1995.03a
    • /
    • pp.121-134
    • /
    • 1995
  • 대수층의 수리상수를 산출하기 위한 양수시험 분석에 이용되는 가장 기본적인 이론은 Theis 이론이다. Theis 이론에서는 지하수의 흐름은 2차원의 방사상 흐름이다. 그러나, 1차 공극으로 이루어진 충적층 대수층이나 사암과 같은 다공질 대수층과는 달리 기반암내에 발달되어 있는 균열 대수층은 균열(fractures), 열극(fissures) 또는 단층과 같은 2차 공극으로 이루어져 있다. (중략)

  • PDF

Analysis of Harmonic Wave Generation in Nonlinear Oblique Crack Surface (비선형 경사 균열면에서의 고조파 발생 특성 해석)

  • Kim, Noh-Yu;Yang, Seung-Yong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.4
    • /
    • pp.376-387
    • /
    • 2012
  • Based on the nonlinear spring model coupled with perturbation method, 2nd harmonic waves generated by oblique incident ultrasound on nonlinear crack interface were calculated and investigated. Reflected and transmitted waves from the interface were determined and analyzed at various angle of incidence for the cracks with different interfacial stiffness in order to estimate the 2nd harmonic generation of incident ultrasound. It was shown in computer simulation that the 2nd harmonic components changed much with the increase of incidence angle in both reflected and transmitted wave, but became very small when the incident angle approached toward 90 degree. It can be concluded that the 2nd harmonic component of reflected wave has a meaningful amplitude as much as the transmitted 2nd harmonic wave from partly closed crack.

J-Integral Estimate for Circumferential Cracked Pipes Under Primary and Secondary Stress in R6, RCC-MR A16 (원주방향 균열 배관에 대한 R6, RCC-MR A16 코드에 의한 1,2 차 복합 하중하에서 J-적분 비교)

  • Nam, Hyun Suk;Oh, Chang Young;Kim, Yun Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.5
    • /
    • pp.631-640
    • /
    • 2013
  • This paper provides a comparison of the J-integral estimation method under combined primary and secondary stress in the R6, RCC-MR A16 code. The comparisons of each code are based on finite element analysis using ABAQUS with regard to the crack shape, crack depth, and magnitude of secondary load. The estimate of the R6 code is conservative near $L_r=1$, and that of the RCC-MR A16 code is conservative near $L_r=0$. As a result, this paper proposes a modified method of J-integral estimation in the R6, RCC_MR A16 code. The J-integral using the modified method corresponds to the finite element analysis result.

Correlation Between Crack Widths and Deflection in Reinforced Concrete Beams (철근콘크리트 보의 균열 폭과 처짐 관계)

  • Kang, Ju-Oh;Kim, Kang-Su;Lee, Deuck-Hang;Lee, Seung-Bea
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.2
    • /
    • pp.184-192
    • /
    • 2010
  • The member deflection is one of the most important considerations for the serviceability evaluation of reinforced concrete (RC) structures, and the concept of the effective moment of inertia has been generally used for its estimation. However, the actual service load applied on an existing RC beam may not be easily obtained, for which the estimation of beam deflection by existing methods can be difficult to obtain. Therefore, based on the correlation between cracks and deflection in a RC beam, this study proposed a method to estimate the deflection of RC beams directly from the condition of cracks not using the actual loads acting on the member as its input data. The proposed method extensively utilized the relationships among sums of crack widths, average strains, and curvatures, and modification factors obtained from regression analysis were also introduced to improve its accuracy. The deflections of members were successfully estimated by the proposed method independent from applied loads, which was also easy to apply compared to the existing methods based on the effective moment of inertia.

Investigation on the Effective Moment of Inertia of Reinforced Concrete Flexural Members Under Service Load (사용하중 상태에서 철근콘크리트 휨부재의 유효 단면2차모멘트에 대한 고찰)

  • Lee, Seung-Bea;Park, Mi-Young;Jang, Su-Youn;Kim, Kang-Su;Kim, Sang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.393-404
    • /
    • 2008
  • The approaches in many design codes for the estimation of the deflection of flexural reinforced concrete (RC) members utilize the concept of the effective moment of inertia which considers the reduction of flexural rigidity of RC beams after cracking. However, the effective moment of inertia in design codes are primarily based on the ratio of maximum moment and cracking moment of beam subjected to loading without proper consideration on many other possible influencing factors such as span length, member end condition, sectional size, loading geometry, materials, sectional properties, amount of cracks and its distribution, and etc. In this study, therefore, an experimental investigation was conducted to provide fundamental test data on the effective moment of inertia of RC beams for the evaluation of flexural deflection, and to develop a modified method on the estimation of the effective moment of inertia based on test results. 14 specimens were fabricated with the primary test parameters of concrete strength, cover thickness, reinforcement ratio, and bar diameters, and the effective moments of inertia obtained from the test results were compared with those by design codes, existing equations, and the modified equation proposed in this study. The proposed method considered the effect of the length of cracking region, reinforcement ratio, and the effective concrete area per bar on the effective moment of inertia, which estimated the effective moment of inertia more close to the test results compared to other approaches.

The Influence of Distance between Current Supply Points on Potential Drop in DCPD (직류전위차법에서 전류 입출력점 사이 거리가 전위차에 미치는 영향)

  • Lee, Jeong-Hee
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.2
    • /
    • pp.104-107
    • /
    • 2009
  • It was verified that the effect of the distance between current input point and output point on direct current potential drop(DCPD) in the material with two-dimensional surface notch. If the distance between potential drop measuring points was fixed at a certain distance, the potential drop was decreased with increasing the distance between current input and output points. Hence it is the effect way to increase sensitivity in DCPD that the current input and output points should be located near the potential measuring points. DCPD was a useful method for surface crack sizing because the potential drop was proportional to the length of notch. When the current input and output points are located near the potential measuring points, even small length crack can be measured by DCPD technique.

Temperature Effect on Tensile Strength of Filled Natural Rubber Vulcanizates (가황 천연고무의 인장강도에 미치는 온도의 영향)

  • Ko, Young-Chon;Park, Byung-Ho
    • Elastomers and Composites
    • /
    • v.36 no.4
    • /
    • pp.255-261
    • /
    • 2001
  • This study was related with the effect of elevated temperature on the tensile strength of edge-cut samples. There was a different tensile strength behavior of uncut samples and pre-cut samples under different test temperatures. Tensile strength of uncut sample decreases with increasing test temperature. When pro-cut size(C) is larger than critical cut size($C_{cr}$), tensile strength or pre-cut specimen at $80^{\circ}C$ is higher than that of pre-cut specimen at room temperature (RT). Test specimens under $80^{\circ}C$ condition exhibited more secondary cracks at the crack tip region compared to room temperature conditions. However, secondary cracks of pre-cut specimens are not clearly developed at $110^{\circ}C$. Differences in tensile strength induced by different test temperature seem to be responsible for the strain-induced crystallization and micro-cracking patterns.

  • PDF

Crack Control of Wall type Structures by Shrinkage and Temperature Reinforcement (수축ㆍ온도 철근에 의한 벽체형 철근 콘크리트 구조물의 균열 제어)

  • 김영진;김상철
    • Magazine of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.52-60
    • /
    • 2002
  • 지하철 구조물과 같은 매스 콘크리트 구조물을 시공할 때 온도 측정을 하는 경우는 많으나 이는 내외부 온도차를 적정한 수준으로 유지하여 균열 발생을 제어하기 위한 수단일 뿐 균열폭을 일정한도 내로 제어할 수 있는 조치는 아니다. 매스 콘크리트 구조물에서 균열폭을 제한 값 이하로 하기 위해서는 적절한 양의 철근을 배치하여야 한다. 또한 시공 이음 등을 작은 간격으로 설치하는 것은 구속도를 완화시키고 온도응력이나 균열폭을 저감시켜 균열 제어상 매우 효과적인 수단이 될 수 있다. 그러나 시공 이음, 균열 유발 줄눈 등의 이음간 간격을 좁히면 내하력 수밀성, 내구성 등에 악영향을 미칠 가능성이 높고, 타설 회수가 많아져 동일한 공정이 반복 투입되므로 시공 속도의 저하 및 공사비 상승 등의 단점이 나타날 수 있다.(중략)