• Title/Summary/Keyword: 2차원 계산

Search Result 2,112, Processing Time 0.037 seconds

A Comparison Study of Antenna Feed Models Suitable for Computation of Responses for a Ground-Penetrating Radar (지하탐사 레이더의 응답 계산에 적합한 안테나 급전모델의 비교 연구)

  • Hyun, Seung-Yeup;Kim, Se-Yun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.2
    • /
    • pp.19-27
    • /
    • 2001
  • All accurate and efficient antenna feed model is very important for computing GPR response using the FDTD method In literature, there are several feed models such as the equivalent network in angular-frequency domain, 1-D transmission-line cell, voltage boundary condition in time domain, etc. In this paper, theoretical relationship among the models is investigated. It is found that the above three models become equivalent when a short and lossless feed line can match with its connected transmitter receiver). In view of accuracy and efficiency of the simulation, the FDTD results according to the feed models arc compared with the measured data of the receiving responses for an actual GPR system.

  • PDF

B$\Phi$rrensen Model Computation for Neutronic Benchmark Problems (Neutronic Benchmark 문제에 대한 B$\Phi$rrensen 모델응용)

  • Bub Dong Chung;Chang Hyo Kim;Chang Hyun Chung
    • Nuclear Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.73-84
    • /
    • 1981
  • B$\Phi$rrensen proposed a coarse mesh, three-dimensional one-and-half group diffusion scheme for computing the gross power distribution in light water reactors as an alternative to the conventional fine mesh finite difference approach in dealing with three dimensional problems, which require a prohibitively long computing time. The method reported takes extremely small execution time. However, its computational accuracy has not been investigated yet. The B$\Phi$rrensen method is revised in this work and both efficiency and accuracy are examined by applying it to IAEA benchmark problem and RIS$\Phi$ benchmark problem. It is found that two modifications on core-reflector boundary conditions and B$\Phi$rrensen's model constants may improve computational accuracy of power distribution calculation.

  • PDF

Flow Propagtion Characteristics from Weir Discharge Conditions by Applying 2-D Hydraulic Model (2차원 모형 이용한 보 방류조건에 따른 흐름전달특성)

  • Kim, Hyeon Il;Han, Kun Yeun;Lee, Jae Yeong;Kim, Beom Jin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.477-477
    • /
    • 2017
  • 국내 4대강사업 이후의 하천환경의 변화를 고려한 보 구간 별 도달시간 재산정이 필요하며, 더욱이 다기능 보의 영향을 고려한 도달시간에 대한 연구도 필요한 실정이다. 또한 4대강사업 이후 설치된 다기능 보의 기존 방류를 이용한 보 운영은 관리수위를 유지하기 위해 유입된 수량만을 방류시켜 수온차가 있는 성층파괴에는 한계가 있었다. 이러한 문제점으로 펄스 방류는 수질개선을 위하여 제시된 인위적 반복적 방법으로 하천의 유량 및 유속을 증대시켜 하천 상 하층을 혼합하여 성층을 파괴함으로써 조류의 성장을 억제하기 위한 목적으로 적용될 수 있으며, 실제 하천에 적용하기에 앞서 보 방류조건에 따른 흐름전달특성의 분석과 검증이 필요하다. 이에 본 연구에서는 4대강사업 이후의 하도에 대한 지형자료와 상세한 보주변의 지형자료를 이용하여 수리학적 모형을 위한 하도자료를 구축하였으며, 보 운영을 고려하여 2차원 수리해석을 실시하였다. 보 방류조건에 따른 흐름전달특성 분석에 앞서 각 보 구간별 거리를 산정하였다. 또한 일정 방류 시나리오 유량조건을 이용하여 각 보 구간별 도달시간을 산정하였으며, 산정된 도달시간은 HEC-RAS를 통해 모의된 계산결과와 비교 및 한국수문조사연보 유량편의 평균유속과의 비교 및 검증을 실시하였다. 또한 펄스 방류에 따른 흐름의 전달특성을 분석을 하였으며, 분석한 결과와 보 하류 주요지점에서의 수위 관측결과를 2차원 수리모형에서 확인 할 수 있었다. 또한 2차원 수리모형 내에서 입자를 적용하여 입자추적을 통한 보 하류부의 흐름전달 양상을 해석하였다. 본 연구를 통하여 유량 규모 및 등급별 방류량을 고려하여 적용 가능한 간편 도달시간을 제안 및 산정하여 현장에서 실무적으로 사용가능한 자료를 제공함으로써 하천 유지 및 관리에 이용이 가능할 것이라 판단된다. 또한 펄스 방류에 따른 흐름의 전달특성을 분석함으로써, 특정 방류량에 따른 흐름특성을 이해하고 후에 수질개선 효과 분석 및 다양한 방류시나리오에 따른 보의 운영 지침에 기초자료를 제공할 수 있을 것으로 판단된다.

  • PDF

Polygon-shaped Filters in Frequency Domain for Practical Filtering of Images (현실적 영상 필터링 방법을 위한 주파수 영역에서의 다각형 형태 필터의 모델링)

  • Kim, Ju-O;Kim, Ji-Su;Park, Cheol-Hyeong;Lee, Deok-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.1-7
    • /
    • 2019
  • In this paper, we propose an approach to design a practical filter and a mathematical modeling for images. In the areas of signal processing, including high-dimensional image processing, the filtering process has been fundamental and crucial in diverse practical applications such as image processing, computer vision, and pattern recognition. In general, the ideal filter is modeled as circular-shaped in the 2D frequency domain as the rectangular shape is ideal for the 1D frequency domain. This paper proposes an approach to modeling practical and efficient image filter in the 2D frequency domain. Instead of employing a circular-shaped filter, this study proposes a polygon-shaped filter inspired by the concept of a hexagon cellular system for frequency reuse in wireless communication systems. By employing the concept of frequency reuse, bandwidth efficiency is also achieved in the frequency domain. To substantiate the proposed approach, quantitative evaluation is performed using PSNR.

An efficient 2.5D inversion of loop-loop electromagnetic data (루프-루프 전자탐사자료의 효과적인 2.5차원 역산)

  • Song, Yoon-Ho;Kim, Jung-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.1
    • /
    • pp.68-77
    • /
    • 2008
  • We have developed an inversion algorithm for loop-loop electromagnetic (EM) data, based on the localised non-linear or extended Born approximation to the solution of the 2.5D integral equation describing an EM scattering problem. Source and receiver configuration may be horizontal co-planar (HCP) or vertical co-planar (VCP). Both multi-frequency and multi-separation data can be incorporated. Our inversion code runs on a PC platform without heavy computational load. For the sake of stable and high-resolution performance of the inversion, we implemented an algorithm determining an optimum spatially varying Lagrangian multiplier as a function of sensitivity distribution, through parameter resolution matrix and Backus-Gilbert spread function analysis. Considering that the different source-receiver orientation characteristics cause inconsistent sensitivities to the resistivity structure in simultaneous inversion of HCP and VCP data, which affects the stability and resolution of the inversion result, we adapted a weighting scheme based on the variances of misfits between the measured and calculated datasets. The accuracy of the modelling code that we have developed has been proven over the frequency, conductivity, and geometric ranges typically used in a loop-loop EM system through comparison with 2.5D finite-element modelling results. We first applied the inversion to synthetic data, from a model with resistive as well as conductive inhomogeneities embedded in a homogeneous half-space, to validate its performance. Applying the inversion to field data and comparing the result with that of dc resistivity data, we conclude that the newly developed algorithm provides a reasonable image of the subsurface.

Analysis of Three-dimensional Water Waves Created by a Hydrofoil Using a Higher-Order Boundary Element Method (고차경계요소법을 이용한 수중익에 대한 3차원 조파문제 해석)

  • Il-Ryong Park;Ho-Hwan Chun;Sung-Hwan Kim;Dong-Dai Ha
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.3
    • /
    • pp.1-13
    • /
    • 1998
  • In the present paper, the hydrodynamic characteristics of three dimensional hydrofoils moving with a constant speed below the free surface using a higher-order boundary element method based on 9-node Lagrangian curvilinear elements are investigated. A bi-quadratic spline scheme is employed to improve the numerical results on the free surface. To validate the present scheme, the calculated results are compared with the analytic solutions for a submerged sphere and a spheroid showing a good agreement. For the validation of the hydrofoil study, the computed lift and drag of a hydrofoil having $NACA64_{1}A412$ section with aspect ratio(A.R.) of 4 are compared with the experimental data by Wadlin et al.[28]. The comparison covers a number of variations of angle of attack and submergence depth. Then, using an A.R. hydrofoil with NACA0012 section, the free surface on the lift and drag are investigated and these are compared with the previous results. The wave elevations and patterns created by the aforementioned submerged bodies are also investigated with Froude numbers and submergences.

  • PDF

Magnetism of Fe Monolayers on Nonmagnetic fcc Transition Metal (Cu, Rh, Pd, and Ag) (001) Surfaces (면심입방 금속(Cu, Rh, Pd, Ag) (001) 표면 위의 철 단층의 자성)

  • Yun, Won-Seok;Cha, Gi-Beom;Rho, Tae-Hwan;Han, Dong-Ho;Hong, Soon-Cheol
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.5
    • /
    • pp.165-170
    • /
    • 2009
  • It is well-known that a meta-stable fcc bulk Fe has an antiferromagnetic (AFM) ground state and could be synthesized by growing Fe on a proper fcc metal substrate. In this study magnetism of Fe monolayers on nonmagnetic fcc transition metal (Cu, Rh, Pd, and Ag) (001) surfaces has been investigated using the all-electron full-potential linearized augmented plane wave method. The Fe monolayers on Rh(001) and Pd(001) surfaces were calculated to be stabilized in an AFM state, whereas the Fe monlayers on Cu(001) and Ag(001) surfaces are stabilized in a ferromagnetic (FM) state. Noting that Cu and Ag have the smallest and largest lattice constants and the fcc bulk Fe with a larger lattice constant is getting stabilized in a ferromagnetic state, it is unexpectable and interesting. The calculated magnetic moments of the Fe atoms on Cu, Rh, Pd, and Ag(001) surfaces are 2.811, 2.945, 2.987, and 2.990 $_{{\mu}B}$ in FM states and 2.624, 2.879, 2.922, and 3.001 $_{{\mu}B}$ in AFM states.

The Study on the Stress Concentration Ratio of Low Slump Mortar Grouting Mixtures for Improving the Soft Ground (연약지반 보강을 위한 저유동성 몰탈 개량체의 응력분담비에 관한 연구)

  • Park, Eonsang;Kim, Byungil;Park, Seungdo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.9
    • /
    • pp.15-24
    • /
    • 2020
  • In this study, the stress concentration ratio for the improved material of the low slump mortar grouting was evaluated through the composite ground method, the ground arching theory, the plastic angle method, the 2D and 3D numerical analysis and the 3D model experiment. The stress concentration ratio calculated by the composite ground method was 89.3, 3.75~59.0 when the three-dimensional ground arching theory was applied, and 82.8 for the three-dimensional plastic angle method. As a result of the 2D numerical analysis, the stress concentration ratio was 63.0~77.0, which was found to increase as the improvement ratio increased. The results of 3D numerical analysis were predicted to be 50.0~56.0 smaller than the results of 2D analysis. In the case of a special model experiment using a large triaxial compression cell, the stress concentration ratio for each load step was 53.0~60.0, and the stress concentration ratio evaluated by the experiment was measured within 2D and 3D numerical analysis predictions. In this study, a predictive equation for the stress concentration ratio according to the improvement ratio is proposed based on the analysis and experimental values for the improved ratio of the low slump mortar grouting.

Floodwave Modeling in Inundated Area Resulting from Levee-Break (제내지에서의 범람홍수파 해석을 위한 수치모형의 개발)

  • 이종태;한건연
    • Water for future
    • /
    • v.28 no.5
    • /
    • pp.163-174
    • /
    • 1995
  • A diffusion hydrodynamic model named "DFLOW-2" for the floodwave analysis from levee-break in protected lowland has been developed. The model has been applied to Ilsan levee-break, which occurred on September 12-13, 1990 in the downstream of the Han River. An unsteady flow analysis has been made in the reach from Indokyo to Junryu. Overflow through broken levee has been treated as internal boundary condition in the channel. A post-processor has been also developed to demonstrate the simulation results. The velocity distributions and inundated depths have been presented. The computed results have good agreements with observed data in terms of inundation depth, flood arrival time and flooded areas.ded areas.

  • PDF

A problem in the cross-hole resistivity method using pole-pole array (단극배열을 이용한 시추공-시추공 전기비저항 탐사법의 문제점)

  • Jo, In Gi;Choe, Gyeong Hwa
    • Journal of the Korean Geophysical Society
    • /
    • v.1 no.1
    • /
    • pp.51-58
    • /
    • 1998
  • A numerical program has been developed to model 2-D resistivity responses for a pole-pole array configuration in cross-hole resistivity measurements. Apparent resistivity and secondary potential were computed using the program for a cylindrical inhomogeneity in an uniform host medium excited by a point source of current in a borehole. Surprisingly apparent resistivity in the receiver hole turns out to be lower than the one of surrounding medium regardless of the conductivity of cylindrical inhomogeneity. Using only cross-hole data, therefore, it is impossible to interpret the conductivity of inhomogeneity. To overcome this problem, 3-D measurement and interpretation are necessary. If 3-D data acquisition is impossible, inline data should be used to get the information about the conductivity of inhomogeneity.

  • PDF