• Title/Summary/Keyword: 2차원수치파동수로

Search Result 17, Processing Time 0.026 seconds

The Characteristics of Wave Energy Variations by Impermeable Submerged Breakwater Using VOF Method in Irregular Wave Fields (VOF 법에 의한 불규칙파동장에 있어서 불투과잠제에 의한 파랑에너지 변형특성)

  • 허동수;김도삼
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.4
    • /
    • pp.207-213
    • /
    • 2003
  • This study is to numerically investigate the characteristics of wave energy variations propagating over impermeable submerged breakwaters with irregular waves. Two-dimensional numerical wave flume based on the VOF method was used. VOF method is the most efficient capable of simulating free surfaces including wave breaking. From the computed frequency spectrum results, wave breaking play important role in ability of the submerged breakwaters to dissipate incident wave energy. In case of occurring wave breaking, our analysis shows that wave energy moves to short wave period on one-row impermeable submerged breakwater's lee side and is widely distributed not having peak period on two- row impermeable submerged breakwater's lee side.

CADMAS-SURF/VOF-SOLA의 해안.항만구조물로의 적용성에 관한 연구

  • 김도삼
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.02a
    • /
    • pp.223-245
    • /
    • 2004
  • 최근, 자유수면을 갖는 비압축성 유체의 해석을 위해 Hirt and Nichols(1981)가 제안한 VOF법이 자유수면을 취급하는 많은 학문분야에서 활발히 활용되고 있다. 특히, 일본에서 잠제에 의한 쇄파해석에 암전 등(1994)이 처음으로 VOF법을 적용한 이래 많은 연구자에 의한 공동연구의 결과로 개발된 CADMAS-SURF(해안개발기술연구 Center, 2001)는 사용자가 직접 입·출력을 제어할 수 있는 효과적인 2차원파동장의 해석프로그램으로 알려져 있다. 국내에서는 김 등(2001, 2002)이 최초로 VOF-SOLA법을 이용한 수치파동수로를 제안하고 잠제주변의 파동장해석을 수행하고 있다. (중략)

  • PDF

Two and Three Dimensional Analysis about the Reflection Coefficient by the Slit Caisson and Resulting Wave Pressure Acting on the Structure (슬리트케이슨제에 의한 반사율과 구조물에 작용하는 파압에 관한 2차원 및 3차원해석)

  • Lee, Kwang-Ho;Choi, Hyun-Seok;Baek, Dong-Jin;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.6
    • /
    • pp.374-386
    • /
    • 2010
  • Recently, the theoretical and experimental research is being made actively in control character of waves of perforated-wall caisson breakwater like the slit caisson. This study showed that the character of reflection coefficient and the wave pressure acting on the front and inner of slit caisson were estimated in two and three dimensional numerical wave flume and compared each other. The numerical experiment was set and conducted by various cases as to a variety of wave steepness under 7 sec, 9 sec, 11sec and 13 sec period condition. In this study using a 2 and 3 dimensional numerical wave flume, it applied the Model for the immiscible two-phase flow based on the Naveir-Stokes Equations. This technique can easily reproduce a complicated physical phenomenon more than others and organize the program simply. According to the results of the experiment, the reflection coefficient was estimated high in short-period waves. However, 2-dimensional numerical experiment and 3-dimensional numerical experiment were the same in case of the long-period waves and high wave steepness. And to conclude in case of short-period waves the pressures were a relatively small difference between the two, but there was a big gap in longperiod waves and high wave steepness.

Control of Short-period and Solitary Waves Using Two-rowed Impermeable Rectangular Submerged Dike (2열 불투과성 사각형 잠제를 이용한 단주기파랑 및 고립파의 제어)

  • Lee, Kwang-Ho;Jung, Sung-Ho;Ha, Sun-Wook;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.4
    • /
    • pp.203-214
    • /
    • 2010
  • This study numerically investigates the wave control of 2-rowed Impermeable Rectangular Submerged Dike(IRSD) with an object of how to control short-period and solitary waves simultaneously based on the Bragg resonance phenomenon that elevates the wave control performance. The boundary integral method using Green formula and the 3-D one-field Model for immiscible TWO-Phase flows (TWOPM-3D) by 3-D numerical wave flume have been used for the numerical predictions for short-period and solitary waves, respectively. These numerical models were verified through the comparisons with the previously published numerical results by other researchers. Through the parametric tests of numerical experiments for short-period waves, an optimum model of 2-rowed IRSD of a lowest transmission coefficient has been found. Furthermore, the performances of 3-D wave control for solitary waves were evaluated for the various free board, crown widths and gap distance between dikes, and have been compared with those of a single-rowed IRSD. Numerical results show that a 2-rowed IRSD with a less cross sectional area than 1-rowed one improves the wave attenuation performances when it is compared to that of single-rowed IRSD. Within the test frequency ranges of the numerical simulations conducted in this study, 2-rowed IRSD with an optimum gap distance shows an outstanding improvement of the wave attenuation up to 58% compared to that of single-rowed IRSD.

Discussion on Optimal Shape for Wave Power Converter Using Oscillating Water Column (진동수주형 파력발전구조물의 최적형상에 대한 검토)

  • Lee, Kwang-Ho;Park, Jung-Hyun;Baek, Dong-Jin;Cho, Sung;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.5
    • /
    • pp.345-357
    • /
    • 2011
  • Recently, as part of diversifying energy sources and earth environmental issues, technology development of new renewable energy using wave energy is actively promoted and commercialized around Europe and Japan etc. In particular, OWC(Oscillating Water Column) wave power generation system using air flow induced by vertical movement of the water surface by waves in an air-chamber within caisson is known as the most efficient wave energy absorption device and therefore, is one of the wave power generation apparatus the closest to commercialization. This study examines air flow velocity, which operates turbine(Wells turbine) directly in oscillating water column type wave power generation structure from two-and three-dimensional numerical experiments and discusses optimal shape of oscillating water column type wave power generation structure by estimating the maximum flow rate of air according to change in shape. The three-dimensional numerical wave flume was applied in interpretation for this study which is the model for the immiscible two-phase flow based on the Navier-Stokes Equation. From this, it turned out that size of optimal shape appears differently according to the incident wave period and air flow is maximized at the period where minimum reflection ratio occurs.

Analysis on Wave Pressure Reduction due to a Slit Capping (슬릿상부공에 의한 파력 감소 분석)

  • Shin, Dong-Min;Ha, Tae-Min;Cho, Yong-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2010.02a
    • /
    • pp.108.2-108.2
    • /
    • 2010
  • 최근 지역어민 또는 관광객들이 친수공간으로 이용할 수 있는 경사식 상부공의 시공이 많아지고 있다. 경사식 상부공은 수평파력을 저감하는 동시에 사면벽에 작용하는 파력을 제체의 안정에 이용할 수 있다. 그러나 직립식 상부공과 비교하여 전달파고가 커지는 문제점을 가지고 있다. 본 연구에서는 상부공에 슬릿을 주어 슬릿 유무에 따른 파력 감소에 대한 수치모의를 실시하였다. 수치모의에는 범용성이 높은 단면 2차원 해석모델인 수치파동수로(CADMAS-SURF)를 사용하였고, 입사파랑으로는 규칙파를 조파하였으며, 전면불투과벽, 슬릿부, 유수실 바닥, 유수실 후벽에서 파력을 측정하였다. 수치모의 결과 상부공에 슬릿이 있는 경우 뚜렷한 파력 감소 효과를 보였으며, 파력감소 효과로 인하여 케이슨의 중량을 줄일 수 있어 공사비 절감 효과도 기대할 수 있었다.

  • PDF

Numerical Simulation of Velocity Fields and Vertex Generation around the Submerged Breakwater on the Sloped Bottom (경사수역에 설치된 잠제 주변의 유속장과 와의 발생에 대한 수치모의)

  • 허동수;김도삼
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.3
    • /
    • pp.151-158
    • /
    • 2003
  • The study of velocity fields and vortex generation around the submerged breakwater can be utilized as materials related to understanding of wave dissipation mechanism, sediment transport, and stability of structure. In the present study, two-dimensional numerical wave flume, based on the VOF method to trace free surface, developed by Kim et al.(2001, 2002) was used to numerically simulate velocity fields and vortex generation around the impermeable submerged breakwater installed at the uniform bottom. Especially, the characteristics of vortex generation due to the geometry of the structure and incident wave conditions are examined through the analysis of averaged-velocity fields around the impermeable submerged breakwater. From the numerical simulations, it is confirmed that a counter clockwise vortex is formed in front of the structure and a clockwise vortex develops behind the structure. Also, incident wave height and period have an sensitive effect on the strength of vortex.

The Study on the Wave Pressure of the Tsunami Acting on the Permeable Structure (투과성구조물에 작용하는 지진해일파압에 관한 연구)

  • Lee, Kwang-Ho;Choi, Hyun-Seok;Kim, Chang-Hoon;Kim, Do-Sam;Cho, Sung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.1
    • /
    • pp.79-92
    • /
    • 2011
  • In this study, wave pressure of short-period gravity waves and tsunami acting on the upright section of the horizontal-slit type caisson placed on the impermeable or permeable seabed, which is a well-known permeable breakwater with a good wave controlling ability, are investigated via numerical simulations. Further, the permeable seabed was modeled as the porous media with porosity of 0.4. Using the numerical results, the effects of the seabed conditions on the wave pressure on the front wall and inside wall of the chamber have been studied. In the numerical simulations, short-period gravity waves and tsunami(solitary wave or bore) with the same amplitude to the gravity wave are considered. A numerical wave tank is used, which is able to consider a gas-liquid two-phase flow in the same calculation zone. Numerical results show that the wave pressure of the tsunami was 3~5 times higher than the short-period gravity waves acting on the front wall and it was 2~4 times higher than the short-period gravity waves acting on the inner wall.

Numerical Analysis of Pressurized Air Flow and Acting Wave Pressure in the Wave Power Generation System Using the Low-Reflection Structure with Wall-Typed Curtain (저반사구조물을 이용한 파력발전에 있어서 압축공기흐름 및 작용파압에 관한 수치해석)

  • Lee, Kwang-Ho;Choi, Hyun-Seok;Kim, Chang-Hoon;Kim, Do-Sam;Cho, Sung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.2
    • /
    • pp.171-181
    • /
    • 2011
  • Recently, many studies have been attempted to save the cost of production and to build the ocean energy power generating system. The low-reflection structure with the wall-typed curtain which has a wave power generation system of OWC is known as the most effective energy conversion system. A three-dimensional numerical model was used to understand the characteristics of velocity of flows about compressed air and to estimate the pressure acting on the low-reflection structure due to the short-period waves. The three-dimensional numerical wave flume which is the model for the immiscible two-phase flow was applied in interpretation for this. The numerical simulation showed well about the changes in velocity of compressed air and the characteristics of pressure according to the change in the wave height and depth of the curtain wall. Additionally, the results found that there was the point of the maximum velocity of the compressed air when the reflection coefficient is at its lowest point.

SPH-Based Wave Tank Simulations (SPH 기법 기반의 파동수조 시뮬레이션)

  • Lee, Sangmin;Kim, Mujong;Ko, Kwonhwan;Hong, Jung-Wuk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.1
    • /
    • pp.59-69
    • /
    • 2021
  • Recently, large-scale offshore and coastal structures have been constructed owing to the increasing interest in eco-friendly energy development. To achieve this, precise simulations of waves are necessary to ensure the safe operations of marine structures. Several experiments are required in the field to understand the offshore wave; however, in terms of scale, it is difficult to control variables, and the cost is significant. In this study, numerical waves under various wave conditions are produced using a piston-type wavemaker, and the produced wave profiles are verified by comparing with the results from a numerical wave tank (NWT) modeled using the smoothed particle hydrodynamics (SPH) method and theoretical equations. To minimize the effect by the reflected wave, a mass-weighted damping zone is set at the right end of the NWT, and therefore, stable and uniform waves are simulated. The waves are generated using the linear and Stokes wave theories, and it is observed that the numerical wave profiles calculated by the Stokes wave theory yield high accuracy. When the relative depth is smaller than two, the results show good agreement irrespective of the wave steepness. However, when the relative depth and wave steepness are larger than 2 and 0.04, respectively, the errors are negligible if the measurement position is close to the excitation plate. However, the error is 10% or larger if the measurement position is away from the excitation location. Applicable target wave ranges are confirmed through various case studies.