Browse > Article

Control of Short-period and Solitary Waves Using Two-rowed Impermeable Rectangular Submerged Dike  

Lee, Kwang-Ho (Department of Civil Engineering, School of Engineering, Nagoya University)
Jung, Sung-Ho (Department of Civil Engineering, Korea Maritime University)
Ha, Sun-Wook (Department of Civil Engineering, Korea Maritime University)
Kim, Do-Sam (Department of Civil Engineering, Korea Maritime University)
Publication Information
Journal of Korean Society of Coastal and Ocean Engineers / v.22, no.4, 2010 , pp. 203-214 More about this Journal
Abstract
This study numerically investigates the wave control of 2-rowed Impermeable Rectangular Submerged Dike(IRSD) with an object of how to control short-period and solitary waves simultaneously based on the Bragg resonance phenomenon that elevates the wave control performance. The boundary integral method using Green formula and the 3-D one-field Model for immiscible TWO-Phase flows (TWOPM-3D) by 3-D numerical wave flume have been used for the numerical predictions for short-period and solitary waves, respectively. These numerical models were verified through the comparisons with the previously published numerical results by other researchers. Through the parametric tests of numerical experiments for short-period waves, an optimum model of 2-rowed IRSD of a lowest transmission coefficient has been found. Furthermore, the performances of 3-D wave control for solitary waves were evaluated for the various free board, crown widths and gap distance between dikes, and have been compared with those of a single-rowed IRSD. Numerical results show that a 2-rowed IRSD with a less cross sectional area than 1-rowed one improves the wave attenuation performances when it is compared to that of single-rowed IRSD. Within the test frequency ranges of the numerical simulations conducted in this study, 2-rowed IRSD with an optimum gap distance shows an outstanding improvement of the wave attenuation up to 58% compared to that of single-rowed IRSD.
Keywords
2-rowed IRSD; short-period waves; solitary waves; wave control; TWOPM-3D; 3-D numerical wave flum;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Smagorinsky, J. (1963). General circulation experiments with the primitive equations. Mon, Weath. Rev., Vol. 91, No. 3, pp. 99- 164.   DOI
2 Tang, C.J. and Chang, J.H. (1998). Flow separation during solitary wave passing over submerged obstacles. J. of Hydraulic Engrg., ASCE, Vol. 124, No. 7, pp. 742-749.   DOI   ScienceOn
3 Zhuang, F. and Lee, J.J. (1996). A viscous rotational model for wave overtopping over marine structure. Proc. 25th Int. Conf. Coastal Engrg., ASCE, pp. 2178-2191.
4 Huang, C.J. and Dong, C.M. (2001). On the interaction of a solitary wave and a submerged dike. Coastal Engrg., Vol. 43, pp. 265- 286.   DOI   ScienceOn
5 Kioka, W., Matsuno, T. and Minagawa, H. (1989). Scattering of surface waves by parallel submerged breakwaters. Proc. Coastal Engrg., JSCE, Vol. 36, pp. 549-553.   DOI
6 Kirby, J.T. and Dalrymple, R.A. (1983). Propagation of obliquely incident water waves over a trench. J. of Fluid Mech., Vol. 133, pp. 47-63.   DOI   ScienceOn
7 Lesieur, M., Metais, O., and Comte, P. (2005). Large-eddy simulations of turbulence. Cambridge Univ. Press, New York, N.Y..
8 Lin, P. (2004) A numerical study of solitary wave interaction with rectangular obstacles. Coastal Engrg., Vol. 51, pp. 35-51.   DOI   ScienceOn
9 Liu, P.L.F. and Cho, Y.S. (1993). Bragg reflection of infragravity waves by sandbars. J. of Geophysical Research, Vol. 98, pp. 22,733-22,741.   DOI
10 Madsen, O.S. and Mei, C.C. (1969). The transformation of a solitary wave over an uneven bottom. J. of Fluid Mech., Vol. 39, pp. 781-791.   DOI
11 Manshinha, L. and Smylie, D.E. (1971). The displacement fields of incident faults. Bull. Seismol. Soc. Amer., Vol. 61, No. 5, pp. 1433-1440.
12 Ohyama, T. and Nadaoka, K. (1991). Development of a numerical wave tank for analysis of non-linear and irregular wave field. Fluid Dyna. Res., Vol. 8, pp. 231-251.   DOI   ScienceOn
13 Cho, Y.S. and Lee, H.J. (2002). Numerical simulations of 1983 central East Sea tsunami at Imwon: 1. Propagation across the east sea. J. of Korea Water Resources Association, Vol. 34, No. 4, pp. 427-436.
14 Seabra-Santntos, F.J., Renouard, D.P. and Temperville, A.M. (1987). Numerical and experimental study of the transformation of a solitary wave over a shelf or isolated obstacle. J. of Fluid Mech., Vol. 176, pp. 117-134.   DOI   ScienceOn
15 Sohn, D.H., Ha, T.M. and Cho, Y.S. (2009). Distant tsunami simulation with corrected dispersion effects. Coastal Engrg. J., Vol. 51, No. 2, pp.123-141.   DOI   ScienceOn
16 Chang, K.A., Hsu, T.J. and Liu, P.L.-F. (2001). Vortex generation and evolution in water waves propagating over a submerged rectangular obstacle : Part I. solitary waves. Coastal Engrg., Vol. 44, pp. 13-26.   DOI   ScienceOn
17 Cho, Y.S., Lee, J.I., Lee, J.K. and Yoon, T.H. (1995). Bragg reflection of shallow-water waves. J. of Korean Society of Civil Engineers, Vol. 15, No. 6, pp. 1823-1832.
18 Dean, R.G. and Dalrymple, R.A. (1991). Water wave mechanics for engineers and scientists. World Scientisfic.
19 Dong, C.M. and Huang, C.J. (1999). Vortex generation in water waves propagating over a submerged rectangular dike. Proc. 9th Intl. Offshore and Polar Engrg. Conf., Vol. III, pp. 388-395.
20 Fenton. J. (1972). A ninth-order solution for the solitary wave: Part 2. J. of Fluid Mech., Vol. 53, pp. 257-271.   DOI
21 Goring, D.G. and Raichlen, F. (1990). Propagation of long waves onto shelf. J. of Waterway, Port, Coastal, and Ocean Engrg, ASCE, Vol. 118, pp. 43-61.
22 Grimshaw, R. (1971). The solitary wave in water of variable depth: Part 2. J. of Fluid Mech., Vol. 46, pp. 611-622.   DOI
23 Hinatsu, M. (1992). Numerical simulation of unsteady viscous nonlinear waves using moving grid system fitted on a free surface. J. of Kansai Soc. Nav. Archit. Japan, No. 217, pp. 1-11.
24 김도삼, 이광호, 허동수, 김정수 (2001). VOF법에 기초한 불투과 잠제 주변파동장의 수치해석. 대한토목학회논문집, 제 21권, 제 5-B호, pp. 551-560.
25 Hirt, C.W and Nichols, B.D. (1981). Volume of fluid(VOF) method for the dynamics of free boundaries. J. of Comput. Phys., Vol. 287, pp. 299-316.
26 Huang, C.J., Chang, H.H. and Hwun, H.H. (2003). Structural permeability effects on the interaction of a solitary wave and a submerged breakwater. Coastal Engrg., Vol. 49, pp. 1-24.   DOI   ScienceOn
27 Huang, C.J. and Dong, C.M. (1999). Wave deformation and vortex generation in water waves propagating over a submerged dike. Coastal Engrg., Vol. 37, pp. 123-148.   DOI   ScienceOn
28 김도삼, 정성호, 이봉재, 김인철 (2000). 경사입사파동장중의 수중다열잠제에 의한 Bragg반사. 대한토목학회논문집, 제 20권 제 5-B호, pp. 737-745.
29 윤덕영, 허동수, 김도삼, 강주복 (1995). 장주기파의 효율적인 제어를 위한 이열잠제의 최적간격. 한국항만학회지, 제 9권, 제 2호, pp. 51-64.
30 이광호, 김창훈, 정성호, 김도삼 (2008a). 고립파(지진해일) 작용하의 수중방파제에 의한 파랑제어. 대한토목학회논문집, 제 28권 제 3B호, pp. 323-334.
31 이광호, 이상기, 신동훈, 김도삼 (2008b). 복수연직주상구조물에 작용하는 비선형파력과 구조물에 의한 비선형파랑변형의 3차원해석, 한국해안.해양공학회논문집, 제 20권, 제 1호, pp. 1-13.   과학기술학회마을
32 이광호, 김도삼, Harry, Y. (2008c). 단파의 전파에 따른 수위 및 유속변화의 특성에 관한 연구, 대한토목학회논문집, 제 28권 제 5B호, pp. 575-589.
33 김도삼, 김지민, 이광호 (2007a). 동해연안에 영향을 미친 지진해일의 수치시뮬레이션, 한국해양공학회지, 제 21권, 제 6호, pp. 72-80.   과학기술학회마을
34 허동수, 김도삼 (2003). VOF법에 의한 불규칙파동장에 있어서 불투과잠제에 의한 파랑에너지의 변형특성. 한국해안.해양공학회지, 제 15권, 제 4호, pp. 207-213.   과학기술학회마을
35 Amsden, A.A. and Harlow, F.H. (1970). The SMAC method: a numerical technique for calculating incompressible fluid flow. Los Alamos Scientific Laboratory Report LA-4370, Los Alaomos, N.M..
36 Brorsen, M. and Larsen, J. (1987). Source generation of nonlinear gravity waves with boundary integral equation method. Coastal Engrg., Vol. 11, pp. 93-113.   DOI   ScienceOn
37 국립방재연구소 (1998). 동해안에서의 쯔나미 위험도 평가. 국립방재연구소, 연구보고서, NIDP-98-06.
38 김도삼 (2000). 다열 잠제에 의한 파랑의 전달율과 반사율. 대한토목학회논문집, 제 20권, 제 I-B호, pp. 85-94.
39 김도삼, 김지민, 이광호, 손병규 (2007b). 일본 지진공백역에서의 지진해일이 우리나라의 남동연안에 미치는 영향분석. 한국해양공학회지, 제 21권, 제 6호, pp. 64-71.   과학기술학회마을