• 제목/요약/키워드: 2,2-Bipyridine

검색결과 95건 처리시간 0.02초

Binding Modes of New Bis-Ru(II) Complexes to DNA: Effect of the Length of the Linker

  • Kwon, Byung-Hyang;Choi, Byung-Hoon;Lee, Hyun-Mee;Jang, Yoon-Jung;Lee, Jae-Cheol;Kim, Seog-K.
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권6호
    • /
    • pp.1615-1620
    • /
    • 2010
  • Bis-[dipyrido[3,2-$\alpha$:2',3'-c]phenazine)$_2$(1,10-phenanthroline)$_2Ru_2$]$^{2+}$ complexes (bis-Ru(II) complexes) tethered by linkers of various lengths were synthesized and their binding properties to DNA investigated by normal absorption and linear dichroism spectra, and fluorescence techniques in this study. Upon binding to DNA, the bis-Ru(II) complex with the longest linker (1,3-bis-(4-pyridyl)-propane), exhibited a negative $LD^r$ signal whose intensity was as large as that in the DNA absorption region, followed by a complicate $LD^r$ signal in the metal-to-ligand charge transfer region. The luminescence intensity of this bis-Ru(II) complex was enhanced. The observed $LD^r$ and luminescence results resembled that of the [Ru(1,10-phenanthroline)$_2$ dipyrido[3,2-$\alpha$:2',3'-c]phenazine]$^{2+}$ complex, whose dipyrido[3,2-$\alpha$:2',3'-c]phenazine (dppz) ligand has been known to intercalate between DNA bases. Hence, it is conclusive that both dppz ligands of the bis-Ru(II) complex intercalate. The binding stoichiometry, however, was a single intercalated dppz per ~ 2.3 bases, which violates the "nearest binding site exclusion" model for intercalation. The length between the two Ru(II) complexes may be barely long enough to accommodate one DNA base between the two dppz ligands, but not for two DNA bases. When the linker was shorter (4,4'-bipyridine or 1,2-bis-(4-pyridyl)-ethane), the magnitude of the LD in the dppz absorption region, as well as the luminescence intensity of both bis-Ru(II) complexes, was half that of the bis-Ru(II) complex bearing a long linker. This observation can be elucidated by a model whereby one of the dppz ligands intercalates while the other is exposed to the aqueous environment.

Two 3D CdII and ZnII Complexes Based on Flexible Dicarboxylate Ligand and Nitrogen-containing Pillar: Synthesis, Structure, and Luminescent Properties

  • Liu, Liu;Fan, Yan-Hua;Wu, Lan-Zhi;Zhang, Huai-Min;Yang, Li-Rong
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권12호
    • /
    • pp.3749-3754
    • /
    • 2013
  • Two 3D isomorphous and isostructural complexes, namely, $[Zn(BDOA)(bpy)(H_2O)_2]_n$ (1) and $[Cd(BDOA)-(bpy)(H_2O)_2]_n$ (2); (BDOA = Benzene-1,4-dioxyacetic acid, bpy = 4,4'-bipyridine) were synthesized under hydrothermal conditions and characterized by means of elemental analyses, thermogravimetric (TG), infrared spectrometry, and single crystal X-ray diffraction. Complexes 1 and 2 crystallize in the triclinic system, space group P-1 and each metal ion in the complexes are six-coordinated with the same coordination environment. In the as-synthesized complexes, $BDOA^{2-}$ anions link central metal ions to form a 1D zigzag chain $[-BDOA^{2-}-Zn(Cd)-BDOA^{2-}-Zn(Cd)-]_{\infty}$, whereas bpy pillars connect metal ions to generate a 1D linear chain $[-bpy-Zn(Cd)-bpy-Zn(Cd)-]_{\infty}$. Both infinite chains are interweaved into 2D grid-like layers which are further constructed into a 3D open framework, where hydrogen bonds play as the bridges between the adjacent 2D layers. Luminescent properties of complex 1 showed selectivity for $Hg^{2+}$ ion.

DNA-Binding and Thermodynamic Parameters, Structure and Cytotoxicity of Newly Designed Platinum(II) and Palladium(II) Anti-Tumor Complexes

  • Mansouri-Torshizi, Hassan;Saeidifar, Maryam;Khosravi, Fatemeh;Divsalar, Adeleh;Saboury, Ali.Akbar;Ghasemi, Zahra Yekke
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권3호
    • /
    • pp.947-955
    • /
    • 2011
  • The complexes [Pd(bpy)(Hex-dtc)]$NO_3$ and [Pt(bpy)(Hex-dtc)]$NO_3$ (bpy is 2,2'-bipyridine and Hex-dtc is hexyldithiocarbamato ligands) were synthesized and characterized by elemental analysis and spectroscopic studies. The cytotoxicity assay of the complexes has been performed on chronic myelogenous leukemia cell line, K562, at micromolar concentration. Both complexes showed cytotoxic activity far better than that of cisplatin under the same experimental conditions. The binding parameters of the complexes with calf thymus DNA (CT-DNA) was investigated using UV-visible and fluorescence techniques. They show the ability of cooperatively intercalating in CT-DNA. Gel filtration studies demonstrated that platinum complex could cleave the DNA. In the interaction studies between the Pd(II) and Pt(II) complexes with CT-DNA, several binding and thermodynamic parameters have been determined, which may provide deeper insights into the mechanism of action of these types of complexes with nucleic acids.

감광성 염료를 도핑한 고분자 태양 전지 소자 연구 (Photovoltaic Effect of Polymer Solar Cells Doped with Sensitizing Dye)

  • 윤수홍;박재우;허윤호;박병주
    • 한국전기전자재료학회논문지
    • /
    • 제26권3호
    • /
    • pp.252-256
    • /
    • 2013
  • We introduced sensitizing dyes into the bulk-heterojunction (BHJ) photovoltaic (PV) layer of polymer solar cells (PSCs). The sensitizing dyes doped were Bis(tetra butyl ammonium) cis-dithio cyanato bis(2,2'-bipyridine-4-carboxylicacid-4'-carboxylate) ruthenium (II) (N719 dye) and the BHJ PV layer used was made of poly (3-hexylthiophene) (P3HT) and phenyl $C_{61}$-butyric acid methyl ester (PCBM). It was found that the N719 dyes increase the photovoltaic performance, i.e., increasing open-circuit voltage and short-circuit current density with improved fill factor. For the P3HT:PCBM PV cells doped with the N719 dyes (0.24 wt%), an increase in power conversion efficiency of 4.0% was achieved, compared to that of the control cells (3.6%) without the N719 dyes.

Investigation on Chain Transfer Reaction of Benzene Sulfonyl Chloride in Styrene Radical Polymerization

  • Li, Cuiping;Fu, Zhifeng;Shi, Yan
    • Macromolecular Research
    • /
    • 제17권8호
    • /
    • pp.557-562
    • /
    • 2009
  • The free radical polymerization of styrene was initiated with azobis(isobutyronitrile) in the presence of benzene sulfonyl chloride. Analysis of the terminal structures of the obtained polystyrene with $^1H$ NMR spectroscopy revealed the presence of a phenyl sulfonyl group at the ${\alpha}$-end and a chlorine atom at the ${\omega}$-end of each polystyrene chain. The terminal chlorine atom in the polystyrene chains was further confirmed through atom transfer radical polymerization (ATRP) of styrene and methyl acrylate using the obtained polystyrenes as macroinitiators and CuCl/2,2'-bipyridine as the catalyst system. GPC traces of the products obtained in ATRP at different reaction times were clearly shifted to higher molecular weight direction, indicating that nearly all the macroinitiator chains initiated ATRP of the second monomers. In addition, the number-average molecular weights of the polystyrenes increased directly proportional to the monomer conversions, and agreed well with the theoretical ones.

크롬(VI)-헤테로고리 착물(2,4'-비피리디늄 클로로크로메이트)에 의한 치환 벤질 알코올류의 산화반응에서 속도론과 메카니즘 (Kinetics and Mechanism of the Oxidation of Substituted Benzyl Alcohols by Cr(VI)-Heterocyclic Complex (2,4'-Bipyridinium Chlorochromate))

  • 박영조;김영식
    • 공업화학
    • /
    • 제25권6호
    • /
    • pp.648-653
    • /
    • 2014
  • 크롬(VI)-헤테로고리 착물(2,4'-비피리디늄 클로로크로메이트)을 합성하여, 적외선 분광광도법(IR), 유도결합 플라즈마(ICP) 등으로 구조를 확인하였고, 여러 가지 용매 하에서, 2,4'-비피리디늄 클로로크로메이트를 이용하여 벤질알코올의 산화반응을 측정한 결과, 유전상수값의 증가에 따라 반응도 증가했다는 것을 보였다. 그 순서는 : N,N-디메 틸포름아미드(DMF) > 아세톤 > 클로로포름 > 시클로헥센산 촉매(HCl)를 이용한 DMF 용매 하에서, 2,4'-비피리디늄 클로로 크로메이트은 벤질 알코올(H)과 그의 유도체들(p-$CH_3$, m-Br, m-$NO_2$)을 효과적으로 산화시켰다. 전자받개 그룹들은 반응 속도가 감소한 반면에 전자주개 치환체들은 반응속도를 증가시켰고, Hammett 반응상수(${\rho}$) 값은 -0.67 (303 K)이었다. 속도결정단계에서 크로메이트 에스테르의 형성과정을 거친 후, 양성자 전이가 일어났다.

Enhancement of Photocurrent Generation by C60-encapsulated Single-walled Carbon Nanotubes in Ru-sensitized Photoelectrochemical Cell

  • Lee, Jung-Woo;Park, Tae-Hee;Lee, Jong-Taek;Jang, Mi-Ra;Lee, Seung-Jin;Kim, Hee-Su;Han, Sung-Hwan;Yi, Whi-Kun
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권8호
    • /
    • pp.2689-2693
    • /
    • 2012
  • Single-walled carbon nanotubes (SWNTs) and $C_{60}$-encapsulated SWNTs ($C_{60}@SWNTs$) are introduced to Ru-sensitized photoelectrochemical cells (PECs), and photocurrents are compared between two cells, i.e., an $RuL_2(NCS)_2$/DAPV/SWNTs/ITO cell and an $RuL_2(NCS)_2$/DAPV/$C_{60}@SWNTs$/ITO cell. [L = 2,2'-bipyridine-4,4'-dicarboxylic acid, DAPV = di-(3-aminopropyl)-viologen, and ITO = indium-tin oxide] The photocurrents are increased by 70.6% in the presence of $C_{60}@SWNTs$. To explain the photocurrent increase, the reverse-field emission method is used, i.e., $RuL_2(NCS)_2$/DAPV/SWNTs/ITO cell (or $RuL_2(NCS)_2$/DAPV/$C_{60}@SWNTs$/ITO cell) as an anode and a counter electrode Pt as a cathode in the external electric field. The improved field emission properties, i.e., ${\beta}$ (field enhancement factor) and emission currents in the reverse-field emission with $C_{60}@SWNTs$ indicate the enhancement of the PEC electric field, which implies the improvement of the electron transfer rate along with the reduced charge recombination in the cell.

Co-Electrodeposition of Bilirubin Oxidase with Redox Polymer through Ligand Substitution for Use as an Oxygen Reduction Cathode

  • Shin, Hyo-Sul;Kang, Chan
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권11호
    • /
    • pp.3118-3122
    • /
    • 2010
  • The water soluble redox polymer, poly(N-vinylimidazole) complexed with Os(4,4'-dichloro-2,2'-bipyridine)$_2Cl]^+$ (PVI-[Os(dCl-bpy)$_2Cl]^+$), was electrodeposited on the surface of a glassy carbon electrode by applying cycles of alternating square wave potentials between 0.2 V (2 s) and 0.7 V (2 s) to the electrode in a solution containing the redox polymer. The coordinating anionic ligand, $Cl^-$ of the osmium complex, became labile in the reduced state of the complex and was substituted by the imidazole of the PVI chain. The ligand substitution reactions resulted in crosslinking between the PVI chains, which made the redox polymer water insoluble and caused it to be deposited on the electrode surface. The deposited film was still electrically conducting and the continuous electrodeposition of the redox polymer was possible. When cycles of square wave potentials were applied to the electrode in a solution of bilirubin oxidase and the redox polymer, the enzyme was co-electrodeposited with the redox polymer, because the enzymes could be bound to the metal complexes through the ligand exchange reactions. The electrode with the film of the PVI-[Os(dCl-bpy)$_2Cl]^+$ redox polymer and the co-electrodeposited bilirubin oxidase was employed for the reduction of $O_2$ and a large increase of the currents was observed due to the electrocatalytic $O_2$ reduction with a half wave potential at 0.42 V vs. Ag/AgCl.

Heteroleptic Phosphorescent Iridium(III) Compound with Blue Emission for Potential Application to Organic Light-Emitting Diodes

  • Oh, Sihyun;Jung, Narae;Lee, Jongwon;Kim, Jinho;Park, Ki-Min;Kang, Youngjin
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권12호
    • /
    • pp.3590-3594
    • /
    • 2014
  • Blue phosphorescent $(dfpypy)_2Ir(mppy)$, where dfpypy = 2',6'-difluoro-2,3'-bipyridine and mppy = 5-methyl-2-phenylpyridine, has been synthesized by newly developed effective method and its solid state structure and photoluminescent properties are investigated. The glass-transition and decomposition temperature of the compound appear at $160^{\circ}C$ and $360^{\circ}C$, respectively. In a crystal packing structure, there are two kinds of intermolecular interactions such as hydrogen bonding ($C-H{\cdots}F$) and edge-to-face $C-H{\cdots}{\pi}(py)$ interaction. This compound emits bright blue phosphorescence with ${\lambda}_{max}=472nm$ and quantum efficiencies of 0.23 and 0.32 in fluid and the solid state. The emission band of the compound is red-shifted by 40 nm relative to homoleptic congener, $Ir(dfpypy)_3$. The ancillary ligand in $(dfpypy)_2Ir(mppy)$ has been found to significantly destabilize HOMO energy, compared to $Ir(dfpypy)_3$, $(dfpypy)_2Ir(acac)$ and $(dfpypy)_2Ir(dpm)$, without significantly changing LUMO energy.

DNA Dynamics: a Fluorescence Resonance Energy Transfer Study Using a Long-Lifetime Metal-Ligand Complex

  • Kang, Jung-Sook;Lakowicz, Joseph-R.;Piszczek, Grzegorz
    • Archives of Pharmacal Research
    • /
    • 제25권2호
    • /
    • pp.143-150
    • /
    • 2002
  • Fluorescent probes bound to DNA typically display nanosecond decay times and reveal only nanosecond motions. We extend the time range of measurable DNA dynamics using $[Ru(pby)_2(dppz)]^{2+}$ (bpy=2.2'-bipyridine, dppz=dipyrido[3,2-a2',3'-c]phenazine) (RuBD) which displays a mean lifetime near 90 ns. To test the usefulness of RuBD as a probe for diffusive processes in calf thymus DNA, we compared the efficiencies of fluorescence resonance energy transfer (FRET) using three donors which display lifetimes near 5 ns for acridine orange (AO), 22 ns for ethidum bromide (EB) and 92 ns for RuBD, with nile blue (NB) as the acceptor. The F rster distances for AO-NB, EB-NB and RuBD-NB donor-acceptor pairs were 42.3, 52.3, and $30.6{\;}{\AA}$, respectively. All three donors showed dramatic decreases in fluorescence intensities and more rapid intensity decays with increasing NB concentrations. The intensity decays of AO and EB in the presence of varying concentrations of NB were satisfactorily described by the one-dimensional FRET model without diffusion (Blumen and Manz, 1979). In the case of the long-lifetime donor RuBD, the experimental phase and modulation somewhat deviated from the recovered values computed from this model. The recovered NB concentrations and FRET efficiencies from the model were slightly larger than the expected values, however, the recovered and expected values did not show a significant difference. Thus, it is suggested that the lifetime of RuBD is too short to measure diffusive processes in calf thymus DNA.