• Title/Summary/Keyword: 2$\times$2 array

Search Result 742, Processing Time 0.037 seconds

Anyang Citizens' Awareness of the Effects of City Parks on City Dwellers

  • Marshall, Tony;Jang, June-Ho;Eom, Boong-Hoon
    • Journal of Environmental Science International
    • /
    • v.28 no.12
    • /
    • pp.1183-1197
    • /
    • 2019
  • This study aimed to investigate educational, social, and environmental effects of city parks on the citizens of Anyang, South Korea. The study conducted a questionnaire survey for 30 days on a sample of 1,080 Anyang residents. Parks can be used for different purposes that have benefits like improving the appeal of the local environment as well as promoting health. The respondents highlighted preferred activities including participating in events, learning eco-practices at school, volunteering, and collaborating with the government to enforce environmental quality laws. The identified effects of parks on citizens according to this study were the benefits obtained from parks in the city, the improvement of their quality of life, and enhancing the environmental quality and sustainability. The study also undertook a correlational analysis to establish the relationship between the citizens' experience in the park and the level of satisfaction they demonstrated in the study for continuity purposes. The data collected was divided into 2 data forms entailed in a comparative analysis chart for the city's 12 parks at different times of the day, and a clustered analysis using 4 data clusters grouped based on the profiles of survey responders. The study concluded that the educational, social, and environmental effects of the parks are significant, suggesting an array of programs that can be used to enhance urban redevelopment and showed the role of parks in environmental awareness for cities in the future.

Development Status of the DOTIFS: a new multi-IFU optical spectrograph for the 3.6m Devasthal Optical Telescope

  • Chung, Haeun;Ramaprakash, A.N.;Omar, Amitesh;Ravindranath, Swara;Chattopadhyay, Sabyasachi;Rajarshi, Chaitanya V.;Khodade, Pravin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.51.1-51.1
    • /
    • 2014
  • DOTIFS is a new multi-object Integral Field Spectrograph (IFS) being designed and fabricated by the Inter-University Center for Astronomy and Astrophysics, Pune, India, (IUCAA) for the Cassegrain side port of the 3.6m Devasthal Optical Telescope (DOT). The telescope is constructed by the Aryabhatta Research Institute of Observational Sciences, Nainital (ARIES). Its main scientific objectives are the physics and kinematics of the ionized gas, star formation and H II regions in nearby galaxies. It is a novel instrument in terms of multi-IFU, built in deployment system, and high throughput. It consists of one magnifier, 16 integral field units (IFUs), and 8 spectrographs. Each IFU is comprised of a microlens array and 144 optical fibers, and has $7.4^{\prime\prime}{\times}8.7^{\prime\prime}$ field of view with 144 spaxel elements with a sampling of 0.8" hexagonal aperture. The IFUs can be deployed on the telescope side port over an 8' diameter focal plane by x-y actuators. 8 Identical, all refractive, dedicated fiber spectrographs will produce 2,304 R~1800 spectra over 370-740nm wavelength range with single exposure. Currently, conceptual and baseline design review had been done, and is in the critical design phase with a review planned for later this year. Some of the components have already arrived. The instrument will see its first light in 2015.

  • PDF

Highly stable Zn-In-Sn-O TFTs for the Application of AM-OLED Display

  • Ryu, Min-Ki;KoPark, Sang-Hee;Yang, Shin-Hyuk;Cheong, Woo-Seok;Byun, Chun-Won;Chung, Sung-Mook;Kwon, Oh-Sang;Park, Eun-Suk;Jeong, Jae-Kyeong;Cho, Kyoung-Ik;Cho, Doo-Hee;Lee, Jeong-Ik;Hwang, Chi-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.330-332
    • /
    • 2009
  • Highly stable bottom gate thin film transistors(TFTs) with a zinc indium tin oxide(Zn-In-Sn-O:ZITO) channel layer have been fabricated by rf-magnetron co-sputtering using a indium tin oxide(ITO:90/10), a tin oxide and a zinc oxide targets. The ZITO TFT (W/L=$40{\mu}m/20{\mu}m$) has a mobility of 24.6 $cm^2$/V.s, a subthreshold swing of 0.12V/dec., a turn-on voltage of -0.4V and an on/off ratio of >$10^9$. When gate field of $1.8{\times}10^5$ V/cm was applied with source-drain current of $3{\mu}A$ at $60^{\circ}C$, the threshold voltage shift was ~0.18 V after 135 hours. We fabricated AM-OLED driven by highly stable bottom gate Zn-In-Sn-O TFT array.

  • PDF

Wafer-Level Fabrication of a Two-Axis Micromirror Driven by the Vertical Comb Drive (웨이퍼 레벨 공정이 가능한 2축 수직 콤 구동 방식 마이크로미러)

  • Kim, Min-Soo;Yoo, Byung-Wook;Jin, Joo-Young;Jeon, Jin-A;Park, Il-Heung;Park, Jae-Hyoung;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.148-149
    • /
    • 2007
  • We present the design and fabrication prcoess of a two-axis tilting micromirror device driven by the electrostatic vertical comb actuator. A high aspect-ratio comb actuator is fabricated by multiple DRIE process in order to achieve large scan angle. The proposed fabrication process enables a mirror to be fabricated on the wafer-scale. By bonding a double-side polished (DSP) wafer and a silicon-on-insulator (SOI) wafer together, all actuators on the wafer are completely hidden under the reflectors. Nickel lines are embedded on a Pyrex wafer for the electrical access to numerous electrodes of mirrors. An anodic bonding step is implemented to contact electrical lines with ail electrodes on the wafer at a time. The mechanical angle of a fabricated mirror has been measured to be 1.9 degree and 1.6 degree, respectively, in the two orthogonal axes under driving voltages of 100 V. Also, a $8{\times}8$ array of micromirrors with high fill-factor of 70 % is fabricated by the same fabrication process.

  • PDF

Properties of Urchin-Structured Zinc Oxide Nanorods Gas Sensor by Using Polystyrene Sphere Array (Polystyrene 입자 정렬을 이용한 성게 구조 ZnO 나노막대 가스 센서의 특성)

  • Kim, Jong-Woo;Kim, Do Hoon;Ki, Tae Hoon;Park, Jung Hyuk;Myoung, Jae-Min
    • Korean Journal of Materials Research
    • /
    • v.27 no.12
    • /
    • pp.658-663
    • /
    • 2017
  • Urchin-structured zinc oxide(ZnO) nanorod(NR) gas sensors were successfully demonstrated on a polyimide(PI) substrate, using single wall carbon nanotubes(SWCNTs) as the electrode. The ZnO NRs were grown with ZnO shells arranged at regular intervals to form a network structure with maximized surface area. The high surface area and numerous junctions of the NR network structure was the key to excellent gas sensing performance. Moreover, the SWCNTs formed a junction barrier with the ZnO which further improved sensor characteristics. The fabricated urchin-structured ZnO NR gas sensors exhibited superior performance upon $NO_2$ exposure with a stable response of 110, fast rise and decay times of 38 and 24 sec, respectively. Comparative analyses revealed that the high performance of the sensors was due to a combination of high surface area, numerous active junction points, and the use of the SWCNTs electrode. Furthermore, the urchin-structured ZnO NR gas sensors showed sustainable mechanical stability. Although degradation of the devices progressed during repeated flexibility tests, the sensors were still operational even after 10000 cycles of a bending test with a radius of curvature of 5 mm.

Impingement heat transfer within 1 row of circular water jets : Part 1-Effects of nozzle configuration (1열 원형 충돌수분류군에 의한 열전달의 실험적 연구 (제1보, 노즐형상의 영향))

  • 엄기찬;김상필
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.1
    • /
    • pp.50-58
    • /
    • 2000
  • Experiments were carried out to obtain the effects of nozzle configuration and jet to jet spacing on the heat transfer characteristics of single line of circular water jets impinging on a constant heat flux plane surface. The nozzle configurations are Cone type, Reverse cone type and Vertical circular type, and the nozzle arrays are single jet(nozzle dia. 8 mm), 1 row of 3 jets and 1 row of 5 jets. Jet velocities ranging from 3m/s to 8m/s were investigated for the nozzle to target plate spacing of 80 mm. For the Cone and Reverse cone type nozzle arrays, the average Nusselt number of 1 row of 5 jets was larger than that of 1 row of 3 jets at Re$_{D}$<45000, but that of 1 row of 3 jets was larger than that of 1 row of 5 jets at $Reo\le45000$. For the Vertical circular type nozzle, however, the average Nusselt number of 1 row of 3 jets was larger than that of 1 row of 5 jets at all jet velocities. In the condition of fixed mass flow rates, the maximum heat transfer augmentation was obtained for 1 row of 5 jets and was over 2 times larger than that of the single jet for all nozzle configurations. The nozzle configurations that produce the maximum average Nusselt number are as follows: For 1 row of 3 jets, the Vertical circular type at $Reo\le45000$ and the Reverse cone type at $Reo\le45000$. But, they are the Reverse cone type at Re$_{D}$<55000 and the Vertical circular type at$Reo\le55000$ for 1 row of 5 jets.

  • PDF

Development of simultaneous multi-channel data acquisition system for large-area Compton camera (LACC)

  • Junyoung Lee;Youngmo Ku;Sehoon Choi;Goeun Lee ;Taehyeon Eom ;Hyun Su Lee ;Jae Hyeon Kim ;Chan Hyeong Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3822-3830
    • /
    • 2023
  • The large-area Compton camera (LACC), featuring significantly high detection sensitivity, was developed for high-speed localization of gamma-ray sources. Due to the high gamma-ray interaction event rate induced by the high sensitivity, however, the multiplexer-based data acquisition system (DAQ) rapidly saturated, leading to deteriorated energy and imaging resolution at event rates higher than 4.7 × 103 s-1. In the present study, a new simultaneous multi-channel DAQ was developed to improve the energy and imaging resolution of the LACC even under high event rate conditions (104-106 s-1). The performance of the DAQ was evaluated with several point sources under different event rate conditions. The results indicated that the new DAQ offers significantly better performance than the existing DAQ over the entire energy and event rate ranges. Especially, the new DAQ showed high energy resolution under very high event rate conditions, i.e., 6.9% and 8.6% (for 662 keV) at 1.3 × 105 and 1.2 × 106 s-1, respectively. Furthermore, the new DAQ successfully acquired Compton images under those event rates, i.e., imaging resolutions of 13.8° and 19.3° at 8.7 × 104 and 106 s-1, which correspond to 1.8 and 73 μSv/hr or about 18 and 730 times the background level, respectively.

Performance Characteristics of 3D GSO PET/CT Scanner (Philips GEMINI PET/DT) (3차원 GSO PET/CT 스캐너(Philips GEMINI PET/CT의 특성 평가)

  • Kim, Jin-Su;Lee, Jae-Sung;Lee, Byeong-Il;Lee, Dong-Soo;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.4
    • /
    • pp.318-324
    • /
    • 2004
  • Purpose: Philips GEMINI is a newly introduced whole-body GSO PET/CT scanner. In this study, performance of the scanner including spatial resolution, sensitivity, scatter fraction, noise equivalent count ratio (NECR) was measured utilizing NEMA NU2-2001 standard protocol and compared with performance of LSO, BGO crystal scanner. Methods: GEMINI is composed of the Philips ALLEGRO PET and MX8000 D multi-slice CT scanners. The PET scanner has 28 detector segments which have an array of 29 by 22 GSO crystals ($4{\times}6{\times}20$ mm), covering axial FOV of 18 cm. PET data to measure spatial resolution, sensitivity, scatter fraction, and NECR were acquired in 3D mode according to the NEMA NU2 protocols (coincidence window: 8 ns, energy window: $409[\sim}664$ keV). For the measurement of spatial resolution, images were reconstructed with FBP using ramp filter and an iterative reconstruction algorithm, 3D RAMLA. Data for sensitivity measurement were acquired using NEMA sensitivity phantom filled with F-18 solution and surrounded by $1{\sim}5$ aluminum sleeves after we confirmed that dead time loss did not exceed 1%. To measure NECR and scatter fraction, 1110 MBq of F-18 solution was injected into a NEMA scatter phantom with a length of 70 cm and dynamic scan with 20-min frame duration was acquired for 7 half-lives. Oblique sinograms were collapsed into transaxial slices using single slice rebinning method, and true to background (scatter+random) ratio for each slice and frame was estimated. Scatter fraction was determined by averaging the true to background ratio of last 3 frames in which the dead time loss was below 1%. Results: Transverse and axial resolutions at 1cm radius were (1) 5.3 and 6.5 mm (FBP), (2) 5.1 and 5.9 mm (3D RAMLA). Transverse radial, transverse tangential, and axial resolution at 10 cm were (1) 5.7, 5.7, and 7.0 mm (FBP), (2) 5.4, 5.4, and 6.4 mm (3D RAMLA). Attenuation free values of sensitivity were 3,620 counts/sec/MBq at the center of transaxial FOV and 4,324 counts/sec/MBq at 10 cm offset from the center. Scatter fraction was 40.6%, and peak true count rate and NECR were 88.9 kcps @ 12.9 kBq/mL and 34.3 kcps @ 8.84 kBq/mL. These characteristics are better than that of ECAT EXACT PET scanner with BGO crystal. Conclusion: The results of this field test demonstrate high resolution, sensitivity and count rate performance of the 3D PET/CT scanner with GSO crystal. The data provided here will be useful for the comparative study with other 3D PET/CT scanners using BGO or LSO crystals.

Deisgn of adaptive array antenna for tracking the source of maximum power and its application to CDMA mobile communication (최대 고유치 문제의 해를 이용한 적응 안테나 어레이와 CDMA 이동통신에의 응용)

  • 오정호;윤동운;최승원
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.11
    • /
    • pp.2594-2603
    • /
    • 1997
  • A novel method of adaptive beam forming is presented in this paper. The proposed technique provides for a suboptimal beam pattern that increases the Signal to Noise/Interference Ratio (SNR/SIR), thus, eventually increases the capacity of the communication channel, under an assumption that the desired signal is dominant compared to each component of interferences at the receiver, which is precoditionally achieved in Code Division Multiple Access (CDMA) mobile communications by the chip correlator. The main advantages of the new technique are:(1)The procedure requires neither reference signals nor training period, (2)The signal interchoerency does not affect the performance or complexity of the entire procedure, (3)The number of antennas does not have to be greater than that of the signals of distinct arrival angles, (4)The entire procedure is iterative such that a new suboptimal beam pattern be generated upon the arrival of each new data of which the arrival angle keeps changing due tot he mobility of the signal source, (5)The total amount of computation is tremendously reduced compared to that of most conventional beam forming techniques such that the suboptimal beam pattern be produced at vevery snapshot on a real-time basis. The total computational load for generating a new set of weitht including the update of an N-by-N(N is the number of antenna elements) autocovariance matrix is $0(3N^2 + 12N)$. It can further be reduced down to O(11N) by approximating the matrix with the instantaneous signal vector.

  • PDF

Real-Time Human Tracker Based Location and Motion Recognition for the Ubiquitous Smart Home (유비쿼터스 스마트 홈을 위한 위치와 모션인식 기반의 실시간 휴먼 트랙커)

  • Park, Se-Young;Shin, Dong-Kyoo;Shin, Dong-Il;Cuong, Nguyen Quoe
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06d
    • /
    • pp.444-448
    • /
    • 2008
  • The ubiquitous smart home is the home of the future that takes advantage of context information from the human and the home environment and provides an automatic home service for the human. Human location and motion are the most important contexts in the ubiquitous smart home. We present a real-time human tracker that predicts human location and motion for the ubiquitous smart home. We used four network cameras for real-time human tracking. This paper explains the real-time human tracker's architecture, and presents an algorithm with the details of two functions (prediction of human location and motion) in the real-time human tracker. The human location uses three kinds of background images (IMAGE1: empty room image, IMAGE2:image with furniture and home appliances in the home, IMAGE3: image with IMAGE2 and the human). The real-time human tracker decides whether the human is included with which furniture (or home appliance) through an analysis of three images, and predicts human motion using a support vector machine. A performance experiment of the human's location, which uses three images, took an average of 0.037 seconds. The SVM's feature of human's motion recognition is decided from pixel number by array line of the moving object. We evaluated each motion 1000 times. The average accuracy of all the motions was found to be 86.5%.

  • PDF