Browse > Article
http://dx.doi.org/10.3740/MRSK.2017.27.12.658

Properties of Urchin-Structured Zinc Oxide Nanorods Gas Sensor by Using Polystyrene Sphere Array  

Kim, Jong-Woo (Department of Materials Science and Engineering, Yonsei University)
Kim, Do Hoon (Department of Materials Science and Engineering, Yonsei University)
Ki, Tae Hoon (Department of Materials Science and Engineering, Yonsei University)
Park, Jung Hyuk (Department of Materials Science and Engineering, Yonsei University)
Myoung, Jae-Min (Department of Materials Science and Engineering, Yonsei University)
Publication Information
Korean Journal of Materials Research / v.27, no.12, 2017 , pp. 658-663 More about this Journal
Abstract
Urchin-structured zinc oxide(ZnO) nanorod(NR) gas sensors were successfully demonstrated on a polyimide(PI) substrate, using single wall carbon nanotubes(SWCNTs) as the electrode. The ZnO NRs were grown with ZnO shells arranged at regular intervals to form a network structure with maximized surface area. The high surface area and numerous junctions of the NR network structure was the key to excellent gas sensing performance. Moreover, the SWCNTs formed a junction barrier with the ZnO which further improved sensor characteristics. The fabricated urchin-structured ZnO NR gas sensors exhibited superior performance upon $NO_2$ exposure with a stable response of 110, fast rise and decay times of 38 and 24 sec, respectively. Comparative analyses revealed that the high performance of the sensors was due to a combination of high surface area, numerous active junction points, and the use of the SWCNTs electrode. Furthermore, the urchin-structured ZnO NR gas sensors showed sustainable mechanical stability. Although degradation of the devices progressed during repeated flexibility tests, the sensors were still operational even after 10000 cycles of a bending test with a radius of curvature of 5 mm.
Keywords
urchin-structure; ZnO; SWCNTs; gas sensor; polystyrene sphere;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. C. Anenberg, J. Miller, R. Minjares, L. Du, D. K. Henze, F. Lacey, C. S. Malley, L. Emberson, V. Franco, Z. Klimont and C. Heyes C., Nature, 545, 467 (2017).   DOI
2 J. Kleinerman and D. Rynbrandt, Arch. Environ. Health, 31, 37 (1976).   DOI
3 C. Wang, L. Yin, L. Zhang, D. Xiang and R. Gao, Sensors, 10, 2088 (2010).   DOI
4 S. D. Baek, P. Biswas, J. W. Kim, Y. C. Kim, T. I. Lee and J. M. Myoung, ACS Appl. Mater. Interfaces, 8, 13018 (2016).   DOI
5 C. C. Hsiao and L. S. Luo, Sensors, 14, 12219 (2014).   DOI
6 D. Gu, H. Baumgart, F. Naumann and M. Petzold, ECS Trans., 33, 529 (2010).
7 H. Xu, X. Liu, D. Cui, M. Li and M. A. Jiang, Sens. Actuators, B, 114, 301 (2006).   DOI
8 I. Paulowicz, V. Hrkac, S. Kaps, V. Cretu, O. Lupan, T. Braniste, V. Duppel, I. Tiginyanu, L. Kienle and R. Adelung, Adv. Electron. Mater., 1, 1 (2015).
9 Z. G. Zhou, Z. L. Tang and Z. T. Zhang, Sens. Actuators, B, 93, 356 (2003).   DOI
10 P. Feng, Q. Wan and T. H. Wang, Appl. Phys. Lett., 87, 213111 (2005).   DOI
11 R. Kumar, O. Dossary, G. Kumar and A. Umar, Nano-Micro Lett., 7, 97 (2015).   DOI
12 O. Lupan, L. Chow, T. Pauporte, L. K. Ono, B. R. Cuenya and G. Chai, Sens. Actuators, B, 173, 772 (2012).   DOI
13 S. Peng and K. Cho, Nanotechnology, 11, 57 (2000).   DOI
14 D. K. Kwon, S. J. Lee and J. M. Myoung, Nanoscale, 8, 16677 (2016).   DOI
15 Y. I. Alivov, E. V. Kalinina, A. E. Cherenkov, D. C. Look, B. M. Ataev, A. K. Omaev, M. V. Chukichev and D. M. Bagnall, Appl. Phys. Lett., 83, 4719 (2003).   DOI
16 Y. C. Kim, S. J. Lee, I. K. Oh, S. Seo, H. Kim and J. M. Myoung, J. Alloy. Compd., 688, 1108 (2016).   DOI