• Title/Summary/Keyword: 1DOF

Search Result 468, Processing Time 0.028 seconds

Trajectory Tracking Control of a Real Redundant Manipulator of the SCARA Type

  • Urrea, Claudio;Kern, John
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.215-226
    • /
    • 2016
  • Modeling, control and implementation of a real redundant robot with five Degrees Freedom (DOF) of the SCARA (Selective Compliant Assembly Robot Arm) manipulator type is presented. Through geometric methods and structural and functional considerations, the inverse kinematics for redundant robot can be obtained. By means of a modification of the classical sliding mode control law through a hyperbolic function, we get a new algorithm which enables reducing the chattering effect of the real actuators, which together with the learning and adaptive controllers, is applied to the model and to the real robot. A simulation environment including the actuator dynamics is elaborated. A 5 DOF robot, a communication interface and a signal conditioning circuit are designed and implemented for feedback. Three control laws are executed in: a simulation structure (together with the dynamic model of the SCARA type redundant manipulator and the actuator dynamics) and a real redundant manipulator of the SCARA type carried out using MatLab/Simulink programming tools. The results, obtained through simulation and implementation, were represented by comparative curves and RMS indices of the joint errors, and they showed that the redundant manipulator, both in the simulation and the implementation, followed the test trajectory with less pronounced maximum errors using the adaptive controller than the other controllers, with more homogeneous motions of the manipulator.

A Study on Kinematics Analysis and Motion Control of Humanoid Robot Arm with Eight Joints (휴머노이드 로봇 관절 아암의 운동학적 해석 및 모션제어에 관한 연구)

  • Jung, Yang-Geun;Lim, O-Duek;Kim, Min-Seong;Do, Ki-Hoon;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.1
    • /
    • pp.49-55
    • /
    • 2017
  • This study proposes a new approach to Control and trajectory generation of a 8 DOF human robot arm with computational complexity and singularity problem. To deal with such problems, analytical methods for a redundant robot arm have been researched to enhance the performance of research, we propose an analytical kinematics algorithm for a 8 DOF bipped dual robot arm. Using this algorithm, it is possible to generate a trajectory passing through the singular points and intuitively move the elbow without regarding to the end-effector pose. Performance of the proposed algorithm was verified by simulation test with various conditions. It has been verified that the trajectory planning using this algorithm.

Trajectory Optimization for Nonlinear Tracking Control in Stratospheric Airship Platform (비선형 추종제어를 위한 성층권비행선의 궤적 최적화)

  • Lee, Sang-Jong;Bang, Hyo-Choong;Chang, Jae-Won;Seong, Kie-Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.1
    • /
    • pp.42-54
    • /
    • 2009
  • Contrast to the 6-DOF nonlinear dynamic modeling of nonlinear tracking problem, 3-DOF point-mass modeling of flight mechanics is efficient and adequate for applying the trajectory optimization problem. There exist limitations to apply an optimal trajectory from point-mass modeling as a reference trajectory directly to conduct the nonlinear tracking control, In this paper, new matching trajectory optimization scheme is proposed to compensate those differences of mismatching. To verify performance of proposed method, full ascent three-dimensional flight trajectories are obtained by reflecting the real constraints of flight conditions and airship performance with and without jet stream condition. Then, they are compared with the optimal trajectories obtained from conventional method.

Development of a Snake Robot for Unstructured Environment (비정형 환경에 적용하기 위한 뱀 로봇 개발)

  • Shin, Hocheol;Kim, Chang-Hoi;Lee, Heung-Ho
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.4
    • /
    • pp.247-255
    • /
    • 2013
  • This paper shows the development of a snake robot (KAEROT-snake V) which consists of 16 1-DOF actuator modules and head module. The modules are connected serially and the joint axis of each module is rotated by $90^{\circ}$ with respect to the previous joint so that the snake robot can move in the 3D space. A tail actuator module includes slip-ring and metal connector. KAEROT-snake IV developed in prior research could move in the 3D space and climb up in a narrow pipe. But its design was not appropriate to the unstructured tough environment and its speed was somewhat slow. A new actuator module is designed to enclose all parts of the module so that any wire is not exposed. The size and weight of the new module was slightly reduced. And the rotation speed and torque of the joint was increased by about twice when compared with pre-module. An embedded controller was developed so small that it can be mounted inside the module. The performance of the developed robot was demonstrated through various locomotion experiments.

A Study on Motion of a Flooding and Un-steerable Vessel in Stormy Weather Condition (침수된 조타불능선의 악천후에서의 거동연구)

  • KIM, Sung-Soo;PARK, Byung-Soo;KANG, Dong-Hoon;LEE, Jong-Hyun;CHO, Hyun-Kuk
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.29 no.1
    • /
    • pp.286-296
    • /
    • 2017
  • This paper conducted a simulation to research the motion of a vessel, which had the flooding accident in the Bering Sea in 2014, thereby being flooded and un-steerable. As the wind condition was very harsh, the vessel was modeled as 3D including large upper deck structures and the Fujiwara's method was used for an estimation of the effect of wind forces and moments acting on ship. In the case of wave influence, AQWA-Drift that enables considering the effects of drift force and AQWA-Naut that enables considering the effects of green water were mainly used. Basically, loading and flooding condition were equal to the accident condition but half-drained condition was also used to consider drain ability. Furthermore, both 6 DOF and 5 DOF option that Yaw motion is fixed, were utilized to compare the steerable and un-steerable condition. As a result, the author found out that what roll angle triggers green water, how often it happens, and how the vessel moves on the stormy weather condition.

A Study on the Tracking Control of a Transfer Crane : Observer Design and Experimental Study (트랜스퍼 크레인의 주행제어에 관한 연구 : 관측기 설계 및 실험적 연구)

  • Choe, Mun-Seok;Suh, Jin-Ho;Lee, Kwon-Soon;Kim, Young-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.1
    • /
    • pp.26-32
    • /
    • 2007
  • The most important thing in the container terminal is to handle the cargo effectively in the limited time. To achieve this object, many strategies have been introduced and applied to. If we consider the automated container terminal, it is necessary that the cargo handling equipments are equipped with more intelligent control systems. From the middle of the 1990's, an automated rail-mounted gantry crane(RMGC) and rubber-tired gantry crane(RTG) have been developed and widely used to handle containers in the yards. Recently, in these cranes, the many equipments like CCD cameras and sensors are mounted to cope with the automated terminal environment. In this paper, we try to support the development of more intelligent automated cranes which make the cargo handling be performed effectively in the yards. For this plant, the modelling, tracking control, anti-sway system design, skew motion suppressing and complicated motion control and suppressing problems must be considered. In this paper, the system modelling and a tracking control approach are discussed. And, we design the tracking control system incorporating an observer based on the 2DOF servosystem design approach to obtain the informations of the states. The experiment results show the usefulness of the designed control system.

An Analysis on the Effect of the PID Controller Design Due to Performance Index (평가지표에 따른 PID 제어기 설계 영향 분석)

  • Lee, Keum-Won
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.1
    • /
    • pp.52-58
    • /
    • 2005
  • Among various modern control theories, PID control has been well used for several decades. PID algorithms need some tuning methods which are used for selecting PID parameters. But in some cases various kinds of performance indices are used instead of well-known tuning rules, and so variable type of performance index must be tested so that controllers, output characteristics and disturbance rejection property meet some specifications. In this paper, linear conbinational type of performance index using error signal, time, control input and robustness is used to the PID control of air conditioning system. By use of the 2 DOF PID parmeters minimizing perfromacne index controllers, output characteristics and robustness properties are analyzed. Simulations are done by use of MATLAB with Simulink.

Modeling and Simulation of the 6 DOF Motion of a High Speed Planing Hull Running in Calm Sea (정수중을 활주하는 고속선의 6자유도 운동 모델링 및 시뮬레이션)

  • Yoon, Hyeon Kyu;Kang, Namseon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.1
    • /
    • pp.10-17
    • /
    • 2016
  • When a planing hull straightly runs and turns, its floating position and pitch angle are changed depending on its speed, and large transient motion happens. In this paper, six degrees of freedom(6 DOF) equations of motion, which could simulate the motion of a planing hull, are established. Static and dynamic forces in vertical plane are modeled using pre-calculated displacements and metacentric heights depending on various draft, lift under bottom, and vertical damping coefficients which are used to tune the final motion. Hydrodynamic coefficients in horizontal plane at various equilibrium state are calculated by using Lewandowski's empirical formula and the speed-dependent equilibrium state are calculated beforehand by Savitsky's formula. The speed effects are considered by curve-fitting the coefficients at various speed to the polynomials. Accelerating, decelerating and backing, turning, and zig-zag are simulated and compared with the sea trial results, and it is confirmed that the speed reduction, roll, and pitch during such maneuvers of sea trial and simulation are well consistent.

A Test Bench with Six Degrees of Freedom of Motion For Development of Small Quadrotor Drones (소형 쿼드로터 드론 개발을 위한 6 자유도 운동 실험 장치)

  • Jin, Jaehyun;Jo, Jin-Hee
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.1
    • /
    • pp.41-46
    • /
    • 2017
  • A new test bench for small multi-rotor type drones has been developed. Six degrees of freedom (DOF) motion is possible due to a ball bushing, wheels, and rotating plates. An FPGA (field programmable gate array) based controller, that supports realtime parallel processing, is used to measure attitude with an accelerometer and a gyro to adjust motor speed. Several tests were performed to check the operational properties of the test bench and the controller. The results show that this test bench is proper for verifying controllers and the control methods of small multi-rotor drones.

Parametric study of pendulum type dynamic vibration absorber for controlling vibration of a two DOF structure

  • Bur, Mulyadi;Son, Lovely;Rusli, Meifal;Okuma, Masaaki
    • Earthquakes and Structures
    • /
    • v.13 no.1
    • /
    • pp.51-58
    • /
    • 2017
  • Passive dynamic vibration absorbers (DVAs) are often used to suppress the excessive vibration of a large structure due to their simple construction and low maintenance cost compared to other vibration control techniques. A new type of passive DVA consists of two pendulums connected with spring and dashpot element is investigated. This research evaluated the performance of the DVA in reducing the vibration response of a two degree of freedom shear structure. A model for the two DOF vibration system with the absorber is developed. The nominal absorber parameters are calculated using a Genetic Algorithm(GA) procedure. A parametric study is performed to evaluate the effect of each absorber parameter on performance. The simulation results show that the optimum condition for the absorber frequencies and damping ratios is mainly affected by pendulum length, mass, and the damping coefficient of the pendulum's hinge joint. An experimental model validates the theoretical results. The simulation and experimental results show that the proposed technique is able be used as an effective alternative solution for reducing the vibration response of a multi degree of freedom vibration system.