• Title/Summary/Keyword: 1D simulation

Search Result 3,663, Processing Time 0.029 seconds

Numerical Model Application for Analysis of Flood Level Mitigation due to Retention-Basin (강변저류지 홍수위 저감효과 분석을 위한 수치모형 적용)

  • Cho, Gilje;Rhee, Dong Sop;Kim, Hyung-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.1
    • /
    • pp.495-505
    • /
    • 2014
  • The retention basin is a river-facility for the flood mitigation by storing the river flow temporarily. The new 3 retention basins are installed in these regions YeoJu, NaJu, YoungWol by the Large River Management Project. In this study, 1D and 2D numerical flow simulation are conducted to evaluate the reduction effect of the peak flood stage for the YeoJu retention basin. HEC-RAS and FLDWAV models are used for 1D simulation with the option of retention basin. CCHE2D model is used for 2D simulation with the same hydrograph used in 1D simulation. It is verified that the peak flood stage is reduced very largely about 0.13 m near the overtopping section of the levee in 1D simulation. It is verified that the peak flood stage is reduced very largely about 0.20 m at the upstream-end of the simulated reach in 2D simulation. 2D simulation for the retention basin is more reasonable because physical characteristics of topography in the model, and also more advantageous for the evaluation of the flow characteristics of the in- and outside of the retention basin on the results of simulation of this study.

Computer Simulation for Development of Electron Gun for MCP Cleaning (MCP 세척용 전자총 개발을 위한 컴퓨터 시뮬레이션)

  • Kim, Sung Soo
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.11
    • /
    • pp.43-49
    • /
    • 2018
  • Computer simulation was performed using the SIMION program to develop an electron gun for MCP cleaning. The target, MCP, is located 180mm from the source of the electron gun, and the diameter of the MCP is approximately 20mm. Therefore, we tried to find the condition that the beam diameter of electrons reaching the MCP is to be 20mm using four variables such as E, ${\phi}$, d1, d2, where the E is the energy of the electron reaching the MCP, the ${\phi}$ is the diameter of the extractor, and the d1 and the d2 are the distance from the electron source to the end of the extractor tube, and to the wall of chamber, respectively. As a result of simulation, we figuried out that the E and the d2 have little effect on the beam diameter. On the other hand, we also found that the beam diameters were very sensitive to the d1 and varied relatively large with respect to the ${\phi}$, and the d1 was the secondary order function of the ${\phi}$. Therefore we found that this function will allow us to design electron guns that are suitable for the purposes of this study.

Design Study of a Simulation Duct for Gas Turbine Engine Operations (가스터빈엔진을 모의하기 위한 시뮬레이션덕트 설계 연구)

  • Im, Ju Hyun;Kim, Sun Je;Kim, Myung Ho;Kim, You Il;Kim, Yeong Ryeon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.1
    • /
    • pp.124-131
    • /
    • 2019
  • A design study of gas turbine engine simulation duct was conducted to investigate the operating characteristics and control gain tunning of the Altitude Engine Test Facility(AETF). The simulation duct design involved testing variable spike nozzle and ISO standard choking nozzle to verify the measurements such as mass flow rate and thrust. The simulation duct air flow area was designed to satisfy Ma 0.4 at the aerodynamic interface plane(AIP) at engine design condition. The test conditions for verifying the AETF controls and measurement devices were deduced from 1D analysis and CFD calculation results. The spike-cone driving part was designed to withstand the applied aero-load, and satisfy the axial traversing speed of 10 mm/s at whole operation envelops.

A Systematic Construction Process of 3D Database for Realtime Virtual Simulation of Transportation Equipments (수송장비의 실시간 가상 시뮬레이션을 위한 3차원 데이터베이스의 체계적인 구축 프로세스)

  • Kim, Bo-Hyun
    • IE interfaces
    • /
    • v.16 no.2
    • /
    • pp.258-267
    • /
    • 2003
  • Recently, virtual reality technologies have been rapidly developed and realtime virtual simulation methods have been extensively employed for several application areas such as game, sports, manufacturing, military, and so on. A 3D database in realtime virtual simulation plays a key role because it makes users feel reality in virtual space. In a application view of 3D database, a systematic construction approach is required to reduce its construction time and increase its quality. However, many researches have been mostly focused on realtime graphic issues and its key technologies. In virtual simulation of transportation equipments, this paper proposes a systematic construction process of 3D database consisting of four stages as follows: 1) determine the activity space of a equipment, 2) collect data related to 3D database construction, 3) make a 3-dimensional modeling strategy, and 4) generate and evaluate a 3D model. This paper also introduces a new procedure of 3D environment modeling, which summarizes and expands our modeling experiences, to be used as a modeling guide.

Computerized Human Body Modeling and Work Motion-capturing in a 3-D Virtual Clothing Simulation System for Painting Work Clothes Development

  • Park, Gin Ah
    • Journal of Fashion Business
    • /
    • v.19 no.3
    • /
    • pp.130-143
    • /
    • 2015
  • By studying 3-D virtual human modeling, motion-capturing and clothing simulation for easier and safer work clothes development, this research aimed (1) to categorize heavy manufacturing work motions; (2) to generate a 3-D virtual male model and establish painting work motions within a 3-D virtual clothing simulation system through computerized body scanning and motion-capturing; and finally (3) to suggest simulated clothing images of painting work clothes developed based on virtual male avatar body measurements by implementing the work motions defined in the 3-D virtual clothing simulation system. For this, a male subject's body was 3-D scanned and also directly measured. The procedures to edit a 3-D virtual model required the total body shape to be 3-D scanned into a digital format, which was revised using 3-D Studio MAX and Maya rendering tools. In addition, heavy industry workers' work motions were observed and recorded by video camera at manufacturing sites and analyzed to categorize the painting work motions. This analysis resulted in 4 categories of motions: standing, bending, kneeling and walking. Besides, each work motion category was divided into more detailed motions according to sub-work posture factors: arm angle, arm direction, elbow bending angle, waist bending angle, waist bending direction and knee bending angle. Finally, the implementation of the painting work motions within the 3-D clothing simulation system presented the virtual painting work clothes images simulated in a dynamic mode.

Arsenic implantation graph comparing with Dopant diffusion simulation and 1-D doping simulation (performed by synopsys sentaurus process)

  • Im, Ju-Won;Park, Jun-Seong
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.344-346
    • /
    • 2016
  • 본 논문에서는 3-stream model에 기반한 Dopant diffusion simulator를 사용하여 실리콘 기판 내부의 As이온의 확산을 시뮬레이션한 결과와 Dual-Pearson Analytic model에 기반하여 Ion implantation을 1-D doping simulation한 결과를 토대로 여러 공정 설계에서 diffusion simulator의 사용가능함을 확인하였다.

  • PDF

Development of lower bodice pattern for late-elementary obese-schoolgirls using 3D virtual garment simulation (3D 가상착의 시스템에 의한 아동후기 비만여아의 슬랙스 원형 설계)

  • Lim, Jiyoung
    • The Research Journal of the Costume Culture
    • /
    • v.23 no.4
    • /
    • pp.616-627
    • /
    • 2015
  • The purpose of this study was to develop slacks patterns for obese-schoolgirls aged 10~12 by using a 3D virtual garment simulation system. The criteria for subjects in this study were girls who had a BMI of over $25kg/m^2$. A total of 155 schoolgirls who met these criteria were enrolled. The results were as follows: First, by using 3D virtual garment simulation, a new slacks pattern considerate of obese-schoolgirls was developed. The basic numerical formulae were as follows: Front and back hip girth of H/4-0.5+1 and H/4+0.5+1.5, front waist girth of W/4+1+0.5, back waist girth of W/4+2+0.5, front crotch extension of H/16-0.5, back crotch extension of H/8-0.5, front dart amount of 1, and back dart amount of 2. Second, according to the new slacks pattern appearance evaluation, the new slacks pattern scored more highly than the existing pattern for silhouette and ease amount, confirming that the new slacks pattern is appropriate for obese-schoolgirls. Additionally, the new slacks pattern was evaluated allowing for the proper space length of the waist, abdomen and hips. This study is expected to serve as important basic data for ensuing studies that may utilize a 3D virtual garment simulation system with 2D patterns and for future 3D pattern production program development.

Evaluate the Effect of the Intake Manifold Geometry on Cylinder-to-cylinder Variation Using 1D-3D Coupling Analysis (1D-3D 연동해석을 통한 흡기 매니폴드 형상이 실린더별 유동 분배에 미치는 영향 평가)

  • Park, Sangjun;Cho, Jungkeun;Song, Soonho;Cho, Jayun;Wang, Taejoong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.2
    • /
    • pp.161-168
    • /
    • 2016
  • CNG engine has been used as a transportation because of higher thermal efficiency and lower CO2 and particulate matter. However its out put power is decreased due to cylinder-to-cylinder variation during the supply of air-fuel mixture to the each cylinder. It also causes noise and vibration. So in this study, 1D engine simulation model was validated by comparison with experiment data and 3D CFD simulation was conducted to steady-state flow analysis about each manifold geometry. Then, the effects of various intake manifold geometries on variation were evaluated by using 1D-3D coupling analysis at engine speed of 2100 rpm range in 12 L CNG engine. As a result, variation was improved about 4 % though 3D CFD analysis and there was a variation within 3 % using 1D-3D coupling analysis.

Clothes Manufacture Systems Design and Embodiment for 3D Clothes Getting Dressed Simulation (3D 의복 착의 시뮬레이션을 위한 의복 제작 시스템 설계 및 구현)

  • Kim Young-Un;Cho Jin-Ei;Lee Yong-Ju;Jung Sung-Tea;Joung Suck-Tea;So In-Mi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.1
    • /
    • pp.57-62
    • /
    • 2006
  • This treatise proposes a develop system that manufactures 3D clothes model who is used in 3D clothes getting dressed simulation. Need 3D human body model and 3D clothes model to do getting dressed simulation. Create priority work Matrix javelin to design clothes model and design 2D piece from designer Connect designed piece plain using backstitch line and create numerical value data because using designed piece and backstitch data finally and make 3D clothes model. Consist of piece design module, to read clothes data and save module, getting dressed simulation module in system that propose in this treatise.

  • PDF