• Title/Summary/Keyword: 17-4 PH

Search Result 124, Processing Time 0.029 seconds

Development of Powder Injection Mold for Dental Scaler Tip Using Stainless Series Powder (스테인레스계열(17-4PH, 316L, 440C) 분말을 이용한 Dental Scaler Tip 분말사출금형 개발)

  • Ko, Y.B.;Kim, J.S.;Hwang, C.J.
    • Transactions of Materials Processing
    • /
    • v.16 no.1 s.91
    • /
    • pp.61-66
    • /
    • 2007
  • Powder injection molding(PIM) is widely used for many parts in the field of automotives, electronics and medical industries, due to the capability of net shaping for complex 3-D geometry. Powder injection mold design for the dental scaler tip, a component of medical appliance, was presented. In comparison with conventional machining process, powder injection molding has many advantages, specially in price and dimensional stability, for molding dental scaler tip which has complex geometry. Both product design and mold design for dental scaler tip were presented. A PIM feedstock was made of stainless series(17-4PH, 316L, 440C) powder and a wax based binder. The 'rapid mold' concept was applied to manufacture the various forms and materials of dental scaler tip including vibration characteristics.

Soil properties in Panax ginseng nursury by parent rock (모암별 인삼묘포지의 토양특성에 관한 연구)

  • Min, Ell-Sik;Park, Gwan-Soo;Song, Suck-Hwan;Lee, Sam-Woong
    • Korean Journal of Agricultural Science
    • /
    • v.30 no.1
    • /
    • pp.31-40
    • /
    • 2003
  • A research has been done for growing characteristics of Korean ginseng in Geumsan of Chungnam Province. It had been made to determine the transitional element concentrations of the rocks, divided by biotitic granite(GR) and phyllite(PH). The physical and chemical properties of their weathering soils and ginseng nursery soils were analyzed. The texture in the GR weathering and ginseng nursery soils were sandy clay, and the texture of the PH weathering and ginseng nursery soils were heavy or silty clay. The bulk densities of the GR and PH weathering soils were $1.21{\sim}1.32g/cm^3$ and $1.26{\sim}1.38g/cm^3$, respectively. Also, the bulk densities of the GR and PH ginseng nursery soils were $1.02{\sim}1.10g/cm^3$, respectively. The pH (4.80) of the GR weathering soil were lower than the pH of the PH(5.34) weathering soil. The pH in the 2 year and 4 year-ginseng nursery soil of the GR were 4.39 and 4.40. In addition, those of the PH were 5.24 and 5.34, respectively. The difference in pH of the two nursery soils could be from the pH difference between the two parent materials. The organic matter contents of the GR weathering soils(0.24%) were higher than those of the PH(1.02%) weathering soils. The organic matter of the 2 and 4 year-ginseng GR nursery soils were 0.87% and 1.52%, and of the PH nursery soils were 2.06% and 2.96%, respectively. The total nitrogen contents of the GR weathering soils were 259.43ppm and of the PH weathering soils were 657.22ppm. Those of 2 and 4 year-ginseng GR nursery soils were 588.04ppm and 657.22ppm and those of the PH nursery soils were 1037.72ppm and 1227.96ppm, respectively. The nitrate and ammonium contents of the GR weathering soils were the extremely small, and those of the PH weathering soils were 6.7ppm and 9.94ppm. Those of 2 year-ginseng GR nursery soils(223.09ppm and 26.96ppm) were higher than those of PH(19.46ppm and 8.23ppm) nursery soils. And those of 2 year-ginseng PH nursery soils(14.22ppm and 16.84ppm) were lower than those of PH(306.93ppm, 34.21ppm) nursery soils. The difference was due to fertilizer types and more deposits of nitrate after oxidation of ammonium. The phosphate contents of the GR and PH weathering soils were 14.41ppm and 38.60ppm. Those of GR 2 and 4 year-ginseng nursery soils were 46.89ppm and 102.44ppm and those of the PH nursery soils were 147.04ppm and 38.60ppm. The cation exchange capacities of the GR weathering soils were 12.34me/100g and those of the PH weathering soils were 15.40me/100g. Those of 2 and 4 year-ginseng GR nursery soils were 15.80me/100g and 7.70me/100g and those of PH nursery soils were 12.14me/100g and 12.83me/100g. All of exchangeable cation($K^+$, $Ca^{2+}$, $Mg^{2+}$, $Na^+$) contents in the nursery soils were higher than those in the weathering soils. The $SO_4{^2-}$ contents of the weathering soils in both of the GR(5.98ppm) and PH(9.94ppm) were higher than those of the GR and PH ginseng nursery soils. The $Cl^-$) contents of the GR and PH weathering soils were a very small and those of the nursery soils(2-yr GR: 39.06ppm, 4-yr GR: 273.43ppm, 2-yr PH: 66.41ppm, 4-yr PH: 406.24ppm) were high because of fertilizer inputs.

  • PDF

Substituents Effect on Aziridine Chemistry: N-Inversion Energy, Reactivity and Regioselectivity of Nucleophilic Ring-opening

  • Park, Gyoo-Soon;Kim, Seok-Chan;Kang, Han-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.9
    • /
    • pp.1339-1343
    • /
    • 2005
  • The N-inversion energies and nucleophilic ring-opening reactions of N-substituted aziridine compounds are investigated using B3LYP/6-31+$G^*$ methods, where substituents (R) on the nitrogen atom has been H (1), Me (2), Ph (3), Bn (4), CHMePh (5), $CO_2Me$ (6), COPh (7) and $SO_2Ph$ (8). The N-inversion energy with X group are decreased as the following order: R = CHMePh (17.06 kcal/mol) $\gt$ Me (16.97) $\gt$ Bn (16.70) $\gt$ H (16.64) $\gt$ $SO_2Ph$ (12.18) $\gt$ Ph (8.91) $\gt$ COPh (5.75) $\gt$ $CO_2Me$ (5.48). For reactivity of the ring opening toward cyanide ion, the aziridine 6 (R=$CO_2Me$) is shown to be the most reactive one. During the ring opening of aziridine 6 by CN$^{\ominus}$, the torsional OCNC angle becomes near to $180^{\circ}$, where the geometry allows for the effective incorporation of electrons of the nitrogen atom to the C=O bond. It would be a possible driving force for nucleophilic ring opening reaction as well as decreasing the N-inversion energy barrier. Regarding to the regioselectivity, the orientation of nucleophile in ring opening reaction appears to be different in the case of 9 and 10. The results are discussed in terms of steric/electronic effect of the $C_2$-substituents.

Spheroidization of Pure-vanadium Powder using Radio Frequency Thermal Plasma Process (RF 플라즈마를 이용한 순수 바나늄 분말의 구상화 거동 연구)

  • Adomako, Nana Kwabena;Yang, Seungmin;Lee, Min Gyu;Reddy, N.S.;Kim, Jeoung-Han
    • Journal of Powder Materials
    • /
    • v.26 no.4
    • /
    • pp.305-310
    • /
    • 2019
  • In the present work, spheroidization of angular vanadium powders using a radio frequency (RF) thermal plasma process is investigated. Initially, angular vanadium powders are spheroidized successfully at an average particle size of $100{\mu}m$ using the RF-plasma process. It is difficult to avoid oxide layer formation on the surface of vanadium powder during the RF-plasma process. Titanium/vanadium/stainless steel functionally graded materials are manufactured with vanadium as the interlayer. Vanadium intermediate layers are deposited using both angular and spheroidized vanadium powders. Then, 17-4PH stainless steel is successfully deposited on the vanadium interlayer made from the angular powder. However, on the surface of the vanadium interlayer made from the spheroidized powder, delamination of 17-4PH occurs during deposition. The main cause of this phenomenon is presumed to be the high thickness of the vanadium interlayer and the relatively high level of surface oxidation of the interlayer.

A Research on the MIM Process of High-Precision Fuze Parts (고정밀 신관 부품의 MIM 공정에 관한 연구)

  • Seo, Jung-Hwa;Kang, Kyeoung-Hoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.231-240
    • /
    • 2012
  • During the past two decades, Metal Injection Molding(MIM) has become a very competitive technology to fabricate small, precise and complex-shaped parts in large quantities. In this research, the applicability of MIM technology in the mass-production of the high precision fuze parts to save manufacturing cost was investigated. The water-atomized 17-4PH stainless steel powder, one of the best corrosion-resistant high strength materials, was injection-molded into real-shape fuze part and flat tensile specimens. The injection-molded parts were thermally debound in hydrogen gas flow without solvent extraction. Sintering of the debound parts was carried out in vacuum at temperatures ranging from $1150^{\circ}C$ to $1370^{\circ}C$. The sintering behavior, mechanical properties, dimensional precision, corrosion resistance of the MIMed 17-4PH stainless parts were investigated. It was found that almost all the properties of the MIMed parts were comparable to those of the mechanically machined parts. Also, actual military field tests using both MIMed and mechanically machined fuze parts were performed as well and were found to be very successful.

Characterization of ATPase Activity of Chaperonin from the Hyperthermophilic Archaeon Pyrococcus horikoshii (초고열성 고세균 Pyrococcus horikoshii 유래 샤페로닌의 ATPase 활성 특성)

  • Choi, Seong Seok;Kim, Se Won;Seo, Yong Bae;Kim, Gun-Do;Lee, Hyeyoung;Kim, Yeon-Hee;Jeon, Sung-Jong;Nam, Soo-Wan
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.4
    • /
    • pp.574-580
    • /
    • 2019
  • ATP drives the conformational change of the group II chaperonin from the open lid substrate-binding conformation to the closed lid conformation to encapsulate an unfolded protein in the central cavity. It is thought that the folding activity of group II chaperonin is strongly correlated with the ATP-dependent conformational change ability. In order to confirm the dependence of the reaction temperature and ATP concentration of PhCpn, the ATPase activities were measured under different reaction temperatures and ATP concentrations. The maximal ATPase activity of PhCpn was observed at 80℃ and 3 mM ATP concentration. As a result of ATPase activity according to the type of salt ions, the highest activity was observed at 300 mM LiCl among the univalent cations and 5 mM MgCl2 among the divalent cations, respectively. The values of Km and Vmax for ATP substrate were estimated as 2.17 mM and 833.3 μM/min, respectively. This results provide the enzymatic information of PhCpn when the prolonged and high activities of pharmaceutical and industrial proteins (or enzymes), by using chaperonin molecules, are required.

Molecular Orbital Study of Bonding and Stability on Rh(Ⅰ)-Alkyne Isomers

  • 강성권;송진수;문정현;윤석성
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.12
    • /
    • pp.1149-1153
    • /
    • 1996
  • Ab initio and extended Huckel calculations were carried out on the isomers of trans-RhCl(η2-C2H2)(PH3)2 (1). Due to π-back donation in 1 complex, the rotational energy barrier of alkyne ligand is computed to be in the range of 18.6-25.2 kcal/mol at MP4 levels. The optimized hydrido-alkynyl complex (2) at ab initio level has the distorted trigonal bipyramidal structure. Vinylidene complex (3) is computed to be more stable than 1 complex by 17.1 kcal/mol at MP4//MP2 level. The stabilities of isomers show similar trend at the various level calculations, that is, EHT, MP4//HF, and MP4//MP2 levels. The optimized geometries at ab initio level are in reasonable agreement with experimental data. A detailed account of the bonding in each isomers (1-3) have been carried out in terms of orbital analyses.

Variation of Inclusion Selectivities of the Cadmium Host Complexes with Ammonium Oniums for Aromatic Guest Molecules (암모니움 이온을 가진 카드뮴 호스트 착물의 방향족 게스트 분자에 대한 포접선택성 변화)

  • Kim, Chong-Hyeak;Lee, Sueg-Geun
    • Analytical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.282-288
    • /
    • 2004
  • Inclusion selectivities of the cyanocadmate host complexes with ammonium oniums, $[Cd_x(CN)_{2x}][onium{\cdot}zG]$ (onium = $NMe_3Et^+$, $NMeEt{_3}^+$ and $NEt{_4}^+$, G = guest), have been investigated for $C_6H_6$ (B), PhMe (T), PhEt (E), ortho (O), meta (M), and para (P) isomers of $C_6H_4Me_2$ as the aromatic guest molecules. From the binary, ternary, quaternary and quinary mixed guests of B, T, E, O, M and P, the order of preference in the $NMe_3Et+$-host is $B{\gg}$T>P${\fallingdotseq}O{\fallingdotseq}M$ and E>O${\gg}P{\fallingdotseq}M$; in the $NMeEt{_3}^+$-host is T>B>P${\gg}O{\fallingdotseq}M$ and E>P${\gg}$M>O; in the $NEt{_4}^+$-host is $B{\gg}T{\fallingdotseq}O{\fallingdotseq}M{\fallingdotseq}P$. However, the $NEt{_4}^+$-host complexes of E, O, M and P mixed-guests were not obtained. These inclusion selectivities were compared to our previous results of the $NMe{_4}^+$-host; T>B>P${\gg}$M>O and E>P${\gg}$M>O.

Synthesis and Structure of trans-Bis[bis(diphenylphosphino)ethane]cyanohydridoiron(II), trans[FeH(CN)$(dppe)_2$](dppe=$Ph_2PCH_2CH_2PPh_2)$ ([FeH(CN)$(dppe)_2$ 착물의 합성 및 구조)

  • 이재경;최남선;이순원
    • Korean Journal of Crystallography
    • /
    • v.10 no.1
    • /
    • pp.45-50
    • /
    • 1999
  • Ar 기류하에서 trans-[FeH(NCCH2CH2CH2Cl)(dppe)2][BF4], 1과 KCN이 반응하여 trans-[FeH(CN)(dppe)2], 2가 생성되었다. 이 화합물의 구조가 NMR, IR, 원소분석, 그리고 X-ray 회절법으로 규명되었다. 착물 2의 결정학 자료: 단사정계 공간군 p21/c, a=13.580(1) b=20.178(2) , c=17.592(3) , β=92.22(1)o, Z=4,(wR2)=0.0659(0.1692).

  • PDF