DOI QR코드

DOI QR Code

Characterization of ATPase Activity of Chaperonin from the Hyperthermophilic Archaeon Pyrococcus horikoshii

초고열성 고세균 Pyrococcus horikoshii 유래 샤페로닌의 ATPase 활성 특성

  • Choi, Seong Seok (Department of Microbiology, College of Natural Sciences, Pukyong National University) ;
  • Kim, Se Won (Department of Smart Bio-Health, Dong-Eui University) ;
  • Seo, Yong Bae (Cbs Bioscience Co., Ltd) ;
  • Kim, Gun-Do (Department of Microbiology, College of Natural Sciences, Pukyong National University) ;
  • Lee, Hyeyoung (Food Science & Technology Major, Division of Applied Bioengineering, College of Engineering, Dong-Eui University) ;
  • Kim, Yeon-Hee (Department of Smart Bio-Health, Dong-Eui University) ;
  • Jeon, Sung-Jong (Department of Smart Bio-Health, Dong-Eui University) ;
  • Nam, Soo-Wan (Department of Smart Bio-Health, Dong-Eui University)
  • 최성석 (부경대학교 미생물학과) ;
  • 김세원 (동의대학교 스마트바이오헬스학과) ;
  • 서용배 (씨비에스 바이오사이언스) ;
  • 김군도 (부경대학교 미생물학과) ;
  • 이혜영 (동의대학교 공과대학 바이오응용공학부 식품공학전공) ;
  • 김연희 (동의대학교 스마트바이오헬스학과) ;
  • 전숭종 (동의대학교 스마트바이오헬스학과) ;
  • 남수완 (동의대학교 스마트바이오헬스학과)
  • Received : 2019.11.12
  • Accepted : 2019.12.02
  • Published : 2019.12.28

Abstract

ATP drives the conformational change of the group II chaperonin from the open lid substrate-binding conformation to the closed lid conformation to encapsulate an unfolded protein in the central cavity. It is thought that the folding activity of group II chaperonin is strongly correlated with the ATP-dependent conformational change ability. In order to confirm the dependence of the reaction temperature and ATP concentration of PhCpn, the ATPase activities were measured under different reaction temperatures and ATP concentrations. The maximal ATPase activity of PhCpn was observed at 80℃ and 3 mM ATP concentration. As a result of ATPase activity according to the type of salt ions, the highest activity was observed at 300 mM LiCl among the univalent cations and 5 mM MgCl2 among the divalent cations, respectively. The values of Km and Vmax for ATP substrate were estimated as 2.17 mM and 833.3 μM/min, respectively. This results provide the enzymatic information of PhCpn when the prolonged and high activities of pharmaceutical and industrial proteins (or enzymes), by using chaperonin molecules, are required.

Group II형 샤페로닌은 단백질의 캡슐화를 유도하기 위해 열린 기질 결합 형태에서 닫힌 형태로 형태를 변화시키며, 이 때 ATP를 필요로 한다. 샤페로닌의 폴딩 유도는 ATP에 의한 샤페로닌의 구조 변화와 관련이 있는 것으로 보여진다. 본 연구에서는 Pyrococcus horikoshii OT3의 group II형 샤페로닌인 PhCpn의 ATPase 활성을 다양한 조건에서 측정하였다. PhCpn의 반응온도(37-85℃)와 ATP 농도(1.5-10 mM) 의존성을 확인한 결과, 반응 온도는 80℃에서, ATP 농도는 3 mM에서 최적 활성을 보였다. 염의 종류에 따른 ATPase의 활성을 분석한 결과, 1가 양이온은 300 mM LiCl, 2가 양이온은 5 mM MgCl2에서 최적 활성을 나타내었다. ATP 기질에 대한 Km 값은 2.17 mM, Vmax 값은 833.3 μM/min으로 계산되었다. 이러한 결과는 의약학용 및 바이오 산업용 단백질(효소)을 장기간 활성유지하는데 PhCpn을 이용할 경우에 귀중한 기초 자료를 제공할 것이다.

Keywords

References

  1. Anfinsen CB. 1973. Principles that govern the folding of protein chains. Science 181: 223-230. https://doi.org/10.1126/science.181.4096.223
  2. Gething MJ, Sambrook J. 1992. Protein folding in the cell. Nature 355: 33-45. https://doi.org/10.1038/355033a0
  3. Horwich AL, Fenton WA, Chapman E, Farr GW. 2007. Two families of chaperonin: physiology and mechanism. Annu. Rev. Cell Dev. Biol. 23: 115-145. https://doi.org/10.1146/annurev.cellbio.23.090506.123555
  4. Hartl FU. 1996. Molecular chaperones in cellular protein folding. Nature 381: 571-579. https://doi.org/10.1038/381571a0
  5. Ranson NA, White HE, Saibil HR. 1998. Chaperonins. J. Biochem. 33: 233-242. https://doi.org/10.1042/bj3330233
  6. Bukau B, Horwich AL. 1998. The Hsp70 and Hsp60 chaperone machines. Cell 92: 351-366. https://doi.org/10.1016/S0092-8674(00)80928-9
  7. Ellis RH, Hartl FU. 1996. Protein folding in the cell: Competing models of chaperonin function. FASEB J. 10: 20-26. https://doi.org/10.1096/fasebj.10.1.8566542
  8. Hartl FU, Hayer-Hartl M. 2002. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295: 1852-1858. https://doi.org/10.1126/science.1068408
  9. Hartl FU, Hayer-Hartl M. 2009. Converging concepts of protein folding in vitro and in vivo. Nat. Struct. Mol. Biol. 16: 574-581. https://doi.org/10.1038/nsmb.1591
  10. Gutsche I, Essen LO, Baumeister W. 1999. Group II chaperonins: new TRiC(k)s and turns of a protein folding machine. J. Mol. Biol. 293: 295-312. https://doi.org/10.1006/jmbi.1999.3008
  11. Reissmann S, Joachimiak LA, Chen B, Meyer AS, Nguyen A, Frydman J. 2012. A gradient of ATP affinities generates an asymmetric power stroke driving the chaperonin TRIC/CCT folding cycle. Cell Rep. 2: 866-877. https://doi.org/10.1016/j.celrep.2012.08.036
  12. Taro K, Ryo I, Kazunobu T, Kosuke M, Rie M, Muhamad S, et al. 2008. Sequential action of ATP-dependent subunit conformational change and interaction between helical protrusions in the closure of the built-in lid of group II chaperonins. J. Biol. Chem. 50: 34773-34784.
  13. Ditzel L, Löwe J, Stock D, Stetter KO, Huber H, Huber R, Steinbacher S. 1998. Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT. Cell 93: 125-138. https://doi.org/10.1016/S0092-8674(00)81152-6
  14. Shomura Y, Yoshida T, Iizuka R, Maruyama T, Yohda M, Miki K. 2004. Crystal structures of the group II chaperonin from Thermococcus strain KS-1: steric hindrance by the substituted amino acid, and inter-subunit rearrangement between two crystal forms J. Mol. Biol. 335: 1265-1278. https://doi.org/10.1016/j.jmb.2003.11.028
  15. Xu Z, Horwich AL, Sigler PB. 1997. The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 388: 741-750. https://doi.org/10.1038/41944
  16. Horovitz A, Willison KR. 2005. Allosteric regulation of chaperonins. Curr. Opin. Struct. Biol. 15: 646-651. https://doi.org/10.1016/j.sbi.2005.10.001
  17. Yebenes H, Mesa P, Munoz IG, Montoya G, Valpuesta JM. 2011. Chaperonins: two rings for folding. Trends Biochem. Sci. 36: 424-432. https://doi.org/10.1016/j.tibs.2011.05.003
  18. Cong Y, Baker ML, Jakana J, Woolford D, Miller EJ, Reissmann S, et al. 2010. 4.0-A resolution cryo-EM structure of the mammalian chaperonin TRiC/CCT reveals its unique subunit arrangement. Proc. Natl. Acad. Sci. USA 107: 4967-4972. https://doi.org/10.1073/pnas.0913774107
  19. Huo Y, Hu Z, Zhang K, Wang L, Zhai Y, Zhou Q, et al. 2010. Crystal structure of group II chaperonin in the open state. Structure 18: 1270-1279. https://doi.org/10.1016/j.str.2010.07.009
  20. Lopez T, Dalton K, Frydman J. 2015. The Mechanism and Function of Group II Chaperonins. J. Mol. Biol. 427: 2919-2930. https://doi.org/10.1016/j.jmb.2015.04.013
  21. Meyer AS, Gillespie JR, Walther D, Millet IS, Doniach S, Frydman J. 2003. Closing the folding chamber of the eukaryotic chaperonin requires the transition state of ATP hydrolysis. Cell 113: 369-381. https://doi.org/10.1016/S0092-8674(03)00307-6
  22. Galit K, Keith RW, Amnon H. 2001. Nested allosteric interactions in the cytoplasmic chaperonin containing TCP-1. Prot. Sci. 10: 445-449. https://doi.org/10.1110/ps.44401
  23. Kim JH, Shin EJ, Jeon SJ, Kim YH, Kim P, Lee CH, Nam SW. 2009. Overexpression, purification, and functional characterization of the group ІІ chaperonin from the hyperthermophilic archaeum Pyrococcus horikoshii OT3. Biotechnol. Bioprocess Eng. 14: 551-558. https://doi.org/10.1007/s12257-009-0008-0
  24. Geladopoulos TP, Sotiroudis TG, Evangelopoulos AE. 1991. A malachite green colorimetric assay for protein phosphatase activity. Anal. Biochem. 192: 112-116. https://doi.org/10.1016/0003-2697(91)90194-X
  25. Okochi M, Matsuzaki H, Nomura T, Ishii N, Yohda M. 2005. Molecular characterization of the group II chaperonin from the hyperthermophilic archaeum Pyrococcus horikoshii OT3. Extremophiles 9: 127-134. https://doi.org/10.1007/s00792-004-0427-y
  26. Viitanen PV, Lubben TH, Reed J, Goloubinoff P, O'Keefe DP, Lorimer GH. 1990. Chaperonin-facilitated refolding of ribulose bisphosphate carboxylase and ATP hydrolysis by chaperonin 60 (groEL) are potassium dependent. Biochemistry 29: 5665-5671. https://doi.org/10.1021/bi00476a003
  27. Guagliardi A, Cerchia L, Bartolucci S, Rossi M. 1994. The chaperonin from the archaeon Sulfolobus solfataricus promotes correct refolding and prevents thermal denaturation in vitro. Protein Sci. 3: 1436-1443. https://doi.org/10.1002/pro.5560030910
  28. Gutsche I, Mihalache O, Baumeister W. 2000. ATPase cycle of an archaeal chaperonin. J. Mol. Biol. 300: 187-196. https://doi.org/10.1006/jmbi.2000.3833
  29. Chen HY, Tan XL, Lu J, Zhang CX, Zhang Y, Yang SL. 2009. Characterization of ATPase activity of class II chaperonin from the hyperthermophilic archaeon Pyrococcus furiosus. Biotechnol. Lett. 31: 1753-1758. https://doi.org/10.1007/s10529-009-0070-x
  30. Russell R, Jordan R, McMacken R. 1998. Kinetic characterization of the ATPase cycle of the DnaK molecular chaperone. Biochemistry 37: 596-607. https://doi.org/10.1021/bi972025p
  31. Silberg JJ, Vickery LE. 2000. Kinetic characterization of the ATPase cycle of the molecular chaperone Hsc66 from Escherichia coli. J. Biol. Chem. 275: 7779-7786. https://doi.org/10.1074/jbc.275.11.7779