Browse > Article
http://dx.doi.org/10.4014/mbl.1911.11005

Characterization of ATPase Activity of Chaperonin from the Hyperthermophilic Archaeon Pyrococcus horikoshii  

Choi, Seong Seok (Department of Microbiology, College of Natural Sciences, Pukyong National University)
Kim, Se Won (Department of Smart Bio-Health, Dong-Eui University)
Seo, Yong Bae (Cbs Bioscience Co., Ltd)
Kim, Gun-Do (Department of Microbiology, College of Natural Sciences, Pukyong National University)
Lee, Hyeyoung (Food Science & Technology Major, Division of Applied Bioengineering, College of Engineering, Dong-Eui University)
Kim, Yeon-Hee (Department of Smart Bio-Health, Dong-Eui University)
Jeon, Sung-Jong (Department of Smart Bio-Health, Dong-Eui University)
Nam, Soo-Wan (Department of Smart Bio-Health, Dong-Eui University)
Publication Information
Microbiology and Biotechnology Letters / v.47, no.4, 2019 , pp. 574-580 More about this Journal
Abstract
ATP drives the conformational change of the group II chaperonin from the open lid substrate-binding conformation to the closed lid conformation to encapsulate an unfolded protein in the central cavity. It is thought that the folding activity of group II chaperonin is strongly correlated with the ATP-dependent conformational change ability. In order to confirm the dependence of the reaction temperature and ATP concentration of PhCpn, the ATPase activities were measured under different reaction temperatures and ATP concentrations. The maximal ATPase activity of PhCpn was observed at 80℃ and 3 mM ATP concentration. As a result of ATPase activity according to the type of salt ions, the highest activity was observed at 300 mM LiCl among the univalent cations and 5 mM MgCl2 among the divalent cations, respectively. The values of Km and Vmax for ATP substrate were estimated as 2.17 mM and 833.3 μM/min, respectively. This results provide the enzymatic information of PhCpn when the prolonged and high activities of pharmaceutical and industrial proteins (or enzymes), by using chaperonin molecules, are required.
Keywords
ATPase activity; chaperonin; enzymatic parameters; Pyrococcus horikoshii;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Russell R, Jordan R, McMacken R. 1998. Kinetic characterization of the ATPase cycle of the DnaK molecular chaperone. Biochemistry 37: 596-607.   DOI
2 Silberg JJ, Vickery LE. 2000. Kinetic characterization of the ATPase cycle of the molecular chaperone Hsc66 from Escherichia coli. J. Biol. Chem. 275: 7779-7786.   DOI
3 Anfinsen CB. 1973. Principles that govern the folding of protein chains. Science 181: 223-230.   DOI
4 Gething MJ, Sambrook J. 1992. Protein folding in the cell. Nature 355: 33-45.   DOI
5 Horwich AL, Fenton WA, Chapman E, Farr GW. 2007. Two families of chaperonin: physiology and mechanism. Annu. Rev. Cell Dev. Biol. 23: 115-145.   DOI
6 Hartl FU. 1996. Molecular chaperones in cellular protein folding. Nature 381: 571-579.   DOI
7 Ranson NA, White HE, Saibil HR. 1998. Chaperonins. J. Biochem. 33: 233-242.   DOI
8 Bukau B, Horwich AL. 1998. The Hsp70 and Hsp60 chaperone machines. Cell 92: 351-366.   DOI
9 Ellis RH, Hartl FU. 1996. Protein folding in the cell: Competing models of chaperonin function. FASEB J. 10: 20-26.   DOI
10 Hartl FU, Hayer-Hartl M. 2002. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295: 1852-1858.   DOI
11 Hartl FU, Hayer-Hartl M. 2009. Converging concepts of protein folding in vitro and in vivo. Nat. Struct. Mol. Biol. 16: 574-581.   DOI
12 Gutsche I, Essen LO, Baumeister W. 1999. Group II chaperonins: new TRiC(k)s and turns of a protein folding machine. J. Mol. Biol. 293: 295-312.   DOI
13 Horovitz A, Willison KR. 2005. Allosteric regulation of chaperonins. Curr. Opin. Struct. Biol. 15: 646-651.   DOI
14 Reissmann S, Joachimiak LA, Chen B, Meyer AS, Nguyen A, Frydman J. 2012. A gradient of ATP affinities generates an asymmetric power stroke driving the chaperonin TRIC/CCT folding cycle. Cell Rep. 2: 866-877.   DOI
15 Taro K, Ryo I, Kazunobu T, Kosuke M, Rie M, Muhamad S, et al. 2008. Sequential action of ATP-dependent subunit conformational change and interaction between helical protrusions in the closure of the built-in lid of group II chaperonins. J. Biol. Chem. 50: 34773-34784.
16 Ditzel L, Löwe J, Stock D, Stetter KO, Huber H, Huber R, Steinbacher S. 1998. Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT. Cell 93: 125-138.   DOI
17 Shomura Y, Yoshida T, Iizuka R, Maruyama T, Yohda M, Miki K. 2004. Crystal structures of the group II chaperonin from Thermococcus strain KS-1: steric hindrance by the substituted amino acid, and inter-subunit rearrangement between two crystal forms J. Mol. Biol. 335: 1265-1278.   DOI
18 Xu Z, Horwich AL, Sigler PB. 1997. The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 388: 741-750.   DOI
19 Yebenes H, Mesa P, Munoz IG, Montoya G, Valpuesta JM. 2011. Chaperonins: two rings for folding. Trends Biochem. Sci. 36: 424-432.   DOI
20 Cong Y, Baker ML, Jakana J, Woolford D, Miller EJ, Reissmann S, et al. 2010. 4.0-A resolution cryo-EM structure of the mammalian chaperonin TRiC/CCT reveals its unique subunit arrangement. Proc. Natl. Acad. Sci. USA 107: 4967-4972.   DOI
21 Huo Y, Hu Z, Zhang K, Wang L, Zhai Y, Zhou Q, et al. 2010. Crystal structure of group II chaperonin in the open state. Structure 18: 1270-1279.   DOI
22 Lopez T, Dalton K, Frydman J. 2015. The Mechanism and Function of Group II Chaperonins. J. Mol. Biol. 427: 2919-2930.   DOI
23 Geladopoulos TP, Sotiroudis TG, Evangelopoulos AE. 1991. A malachite green colorimetric assay for protein phosphatase activity. Anal. Biochem. 192: 112-116.   DOI
24 Meyer AS, Gillespie JR, Walther D, Millet IS, Doniach S, Frydman J. 2003. Closing the folding chamber of the eukaryotic chaperonin requires the transition state of ATP hydrolysis. Cell 113: 369-381.   DOI
25 Galit K, Keith RW, Amnon H. 2001. Nested allosteric interactions in the cytoplasmic chaperonin containing TCP-1. Prot. Sci. 10: 445-449.   DOI
26 Kim JH, Shin EJ, Jeon SJ, Kim YH, Kim P, Lee CH, Nam SW. 2009. Overexpression, purification, and functional characterization of the group ІІ chaperonin from the hyperthermophilic archaeum Pyrococcus horikoshii OT3. Biotechnol. Bioprocess Eng. 14: 551-558.   DOI
27 Gutsche I, Mihalache O, Baumeister W. 2000. ATPase cycle of an archaeal chaperonin. J. Mol. Biol. 300: 187-196.   DOI
28 Okochi M, Matsuzaki H, Nomura T, Ishii N, Yohda M. 2005. Molecular characterization of the group II chaperonin from the hyperthermophilic archaeum Pyrococcus horikoshii OT3. Extremophiles 9: 127-134.   DOI
29 Viitanen PV, Lubben TH, Reed J, Goloubinoff P, O'Keefe DP, Lorimer GH. 1990. Chaperonin-facilitated refolding of ribulose bisphosphate carboxylase and ATP hydrolysis by chaperonin 60 (groEL) are potassium dependent. Biochemistry 29: 5665-5671.   DOI
30 Guagliardi A, Cerchia L, Bartolucci S, Rossi M. 1994. The chaperonin from the archaeon Sulfolobus solfataricus promotes correct refolding and prevents thermal denaturation in vitro. Protein Sci. 3: 1436-1443.   DOI
31 Chen HY, Tan XL, Lu J, Zhang CX, Zhang Y, Yang SL. 2009. Characterization of ATPase activity of class II chaperonin from the hyperthermophilic archaeon Pyrococcus furiosus. Biotechnol. Lett. 31: 1753-1758.   DOI