• 제목/요약/키워드: 16S rDNA Denaturing Gradient Gel Electrophoresis

검색결과 53건 처리시간 0.026초

Denaturing Gradient Gel Electrophoresis를 이용한 음식물 쓰레기 퇴비화 세균 군집 분석 (Bacterial Community Analysis during Composting of Garbage using Denaturing Gradient Gel Electro-phoresis)

  • 류희욱;조경숙
    • 한국미생물·생명공학회지
    • /
    • 제33권3호
    • /
    • pp.226-230
    • /
    • 2005
  • The microbial community during composting of gargage was analyzed using 16S rDNA PCR - DGCE (denaturing gradient gel electrophoresis). Pseudomonas spp. was found throughout the process, and thermophilic Bacillus spp. was dominated at the thermophilic stage. Six thermophilic bacteria were isolated and identified as B. caldoxylolyticus, B. thermoalkalophilus, and B. thermodenitrificans.

16S rDNA-DGGE를 이용한 2종의 제주도 해양 해면의 공생세균의 군집 구조 (Community Structure of Bacteria Associated with Two Marine Sponges from Jeju Island Based on 16S rDNA-DGGE Profiles)

  • 박진숙;심정자;안광득
    • 미생물학회지
    • /
    • 제45권2호
    • /
    • pp.170-176
    • /
    • 2009
  • 제주도에 서식하는 2종의 해양 해면, Dictyonella sp.와 Spirastrella abata의 공생세균 군집구조를 16S rDNA-DGGE(denaturing gradient gel electrophoresis) 방법에 의해 분석하였다. 해면으로부터 total genomic DNA를 추출하여 GC clamp가 추가된 세균에 특이적인 341f primer와 518r primer를 이용하여 16S rRNA gene의 V3 부위를 증폭한 후 DGGE 전기 영동하고 재증폭하여 염기서열을 분석하였다. 그 결과 Dictyonella sp.에서 8개, Spirastrella abata에서 7개의 band를 확인할 수 있었다. 공통된 주요 band가 없는 패턴을 나타내었으며, DGGE band로부터 DNA를 추출하여 부분 염기서열을 분석한 결과, NCBI에 등록된 서열들과 93%~98%의 유사도를 나타내었다. Dictyonella sp.의 주요 해면 공생세균은 uncultured Gammaproteobacteria, Spirastrella abata의 경우 uncultured Alphaproteobacteria, Firmicutes에 각각 포함되어 해면 종에 따른 숙주 특이적 분포를 보이는 것으로 나타났다.

DGGE를 이용한 동굴 생태계 세균 군집 구조 분석 (Analysis of Bacterial Community Structure in Gossi Cave by Denaturing Gradient Gel Electrophoresis (DGGE))

  • 조홍범;정순오;최용근
    • 환경생물
    • /
    • 제22권1호
    • /
    • pp.213-219
    • /
    • 2004
  • 동굴 내 정점별 세균 군집 구조를 분석하기 위하여 PCf amplified 16S rDNA denaturing gradient gel electrophoresis(DGGE)를 적용하였다. DGGE는 동일한 분자량을 갖는 dsDNA band라고 할지라도, 각각의 염기서열 차이에 따라 전기영동 상에서 고유한 band양상을 나타낼 수 있다. eubacteria의 16S rDNA V3region을 증폭하기 위해 GC341F와 PRUN518r을 primer로 사용하여 지하수내에 미생물 군집의 다양성과 유사성을 분석하였다. DGGE band 양상을 통해 동굴내의 세균 군집 구조는 외부 환경에 비해 상대적으로 종다양성이 낮으며 동굴내 에서 특이적으로 서식하는 종이 있음을 확인하였다. 또한 유기 영양물질의 공급이 제한되어 있는 동굴에서 구아노가 주요 유기 영양물질의 공급원으로서 큰 영향을 미치고 있는 것으로 파악되었다. DGGE 상의 일부 band의 염기서열분석 결과 Pseudomonas sp. NZ060과 Pseudomonas pseudoalcaligenes, uncultured Variovorax sp., soil bacterium NS7로 동정되었다.

Denaturing Gradient Gel Electrophoresis Analysis of Bacterial Populations in 5-Stage Biological Nutrient Removal Process with Step Feed System for Wastewater Treatment

  • Lee, Soo-Youn;Kim, Hyeon-Guk;Park, Jong-Bok;Park, Yong-Keun
    • Journal of Microbiology
    • /
    • 제42권1호
    • /
    • pp.1-8
    • /
    • 2004
  • Changes in the bacterial populations of a 5-stage biological nutrient removal (BNR) process, with a step feed system for wastewater treatment, were monitored by denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S ribosomal DNA fragments. DGGE analysis indicated seasonal community changes were observed, however, community profiles of the total bacteria of each reactor showed only minor differences in the samples obtained from the same season. The number of major bands was higher in the summer samples, and decreased during the winter period, indicating that the microbial community structure became simpler at low temperatures. Since the nitrogen and phosphate removal efficiencies were highly maintained throughout the winter operation period, the bacteria which still remaining in the winter sample can be considered important, playing a key role in the present 5-stage BNR sludge. The prominent DGGE bands were excised, and sequenced to gain insight into the identities of the predominant bacterial populations present, and most were found to not be closely related to previously characterized bacteria. These data suggest the importance of culture-independent methods for the quality control of wastewater treatment.

The Genetic Diversity Analysis of the Bacterial Community in Groundwater by Denaturing Gradient Gel Electrophoresis (DGGE)

  • Cho, Hong-Bum;Lee, Jong-Kwang;Choi, Yong-Keel
    • Journal of Microbiology
    • /
    • 제41권4호
    • /
    • pp.327-334
    • /
    • 2003
  • This study employed two PCR-based 16S rDNA approaches, amplified rDNA restriction analysis (ARDRA) and denaturing gradient gel electrophoresis (DGGE), to characterize the bacterial community structure in groundwater. Samples were collected from groundwater for the use by private residences, as well as for industrial and agricultural purposes, in Ansan City. Each PCR product was obtained by PCR with eubacteria 16S rDNA and variable V3 region specific primer sets. After amplification, the 16S rDNA PCR products were digested with 4-base site specific restriction endonucleases, and the restriction pattern analyzed. The genetic diversity and similarity of the groundwater bacterial community was analyzed by eubacteria universal primer sets for the amplification of variable V3 regions of the bacterial 16S rDNA. The result of the bacterial community analysis, by ARDRA and DGGE, revealed the same pattern. The highest diversity was found in groundwater from site G1, which was used in residences. In the DGGE profile, a high intensity band was sequenced, and revealed to be Pseudomonas sp. strain P51.

Culture-Based and Denaturing Gradient Gel Electrophoresis Analysis of the Bacterial Community Structure from the Intestinal Tracts of Earthworms (Eisenia fetida)

  • Hong, Sung-Wook;Kim, In-Su;Lee, Ju-Sam;Chung, Kun-Sub
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권9호
    • /
    • pp.885-892
    • /
    • 2011
  • The bacterial communities in the intestinal tracts of earthworm were investigated by culture-dependent and -independent approaches. In total, 72 and 55 pure cultures were isolated from the intestinal tracts of earthworms under aerobic and anaerobic conditions, respectively. Aerobic bacteria were classified as Aeromonas (40%), Bacillus (37%), Photobacterium (10%), Pseudomonas (7%), and Shewanella (6%). Anaerobic bacteria were classified as Aeromonas (52%), Bacillus (27%), Shewanella (12%), Paenibacillus (5%), Clostridium (2%), and Cellulosimicrobium (2%). The dominant microorganisms were Aeromonas and Bacillus species under both aerobic and anaerobic conditions. In all, 39 DNA fragments were identified by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis. Aeromonas sp. was the dominant microorganism in feeds, intestinal tracts, and casts of earthworms. The DGGE band intensity of Aeromonas from feeds, intestinal tracts, and casts of earthworms was 12.8%, 14.7%, and 15.1%, respectively. The other strains identified were Bacillus, Clostridium, Enterobacter, Photobacterium, Pseudomonas, Shewanella, Streptomyces, uncultured Chloroflexi bacterium, and uncultured bacterium. These results suggest that PCR-DGGE analysis was more efficient than the culturedependent approach for the investigation of bacterial diversity and the identification of unculturable microorganisms.

Improvement of PCR Amplification Bias for Community Structure Analysis of Soil Bacteria by Denaturing Gradient Gel Electrophoresis

  • Ahn, Jae-Hyung;Kim, Min-Cheol;Shin, Hye-Chul;Choi, Min-Kyeong;Yoon, Sang-Seek;Kim, Tae-Sung;Song, Hong-Gyu;Lee, Geon-Hyoung;Ka, Jong-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권10호
    • /
    • pp.1561-1569
    • /
    • 2006
  • Denaturing gradient gel electrophoresis (DGGE) is one of the most frequently used methods for analysis of soil microbial community structure. Unbiased PCR amplification of target DNA templates is crucial for efficient detection of multiple microbial populations mixed in soil. In this study, DGGE profiles were compared using different pairs of primers targeting different hypervariable regions of thirteen representative soil bacteria and clones. The primer set (1070f-1392r) for the E. coli numbering 1,071-1,391 region could not resolve all the 16S rDNA fragments of the representative bacteria and clones, and moreover, yielded spurious bands in DGGE profiles. For the E. coli numbering 353-514 region, various forward primers were designed to investigate the efficiency of PCR amplification. A degenerate forward primer (F357IW) often yielded multiple bands for a certain single 16S rDNA fragment in DGGE analysis, whereas nondegenerate primers (338f, F338T2, F338I2) differentially amplified each of the fragments in the mixture according to the position and the number of primer-template mismatches. A forward primer (F352T) designed to have one internal mismatch commonly with all the thirteen 16S rDNA fragments efficiently produced and separated all the target DNA bands with similar intensities in the DGGE profiles. This primer set F352T-519r consistently yielded the best DGGE banding profiles when tested with various soil samples. Touchdown PCR intensified the uneven amplification, and lowering the annealing temperature had no significant effect on the DGGE profiles. These results showed that PCR amplification bias could be much improved by properly designing primers for use in fingerprinting soil bacterial communities with the DGGE technique.

Application of rDNA-PCR Amplification and DGGE Fingerprinting for Detection of Microbial Diversity in a Malaysian Crude Oil

  • Liew, Pauline Woan Ying;Jong, Bor Chyan
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권5호
    • /
    • pp.815-820
    • /
    • 2008
  • Two culture-independent methods, namely ribosomal DNA libraries and denaturing gradient gel electrophoresis (DGGE), were adopted to examine the microbial community of a Malaysian light crude oil. In this study, both 16S and 18S rDNAs were PCR-amplified from bulk DNA of crude oil samples, cloned, and sequenced. Analyses of restriction fragment length polymorphism (RFLP) and phylogenetics clustered the 16S and 18S rDNA sequences into seven and six groups, respectively. The ribosomal DNA sequences obtained showed sequence similarity between 90 to 100% to those available in the GenBank database. The closest relatives documented for the 16S rDNAs include member species of Thermoincola and Rhodopseudomonas, whereas the closest fungal relatives include Acremonium, Ceriporiopsis, Xeromyces, Lecythophora, and Candida. Others were affiliated to uncultured bacteria and uncultured ascomycete. The 16S rDNA library demonstrated predomination by a single uncultured bacterial type by >80% relative abundance. The predomination was confirmed by DGGE analysis.

PCR-DGGE를 이용한 해양미생물의 다양성 조사 (Diversity of Marine Microbes by PCR-DGGE)

  • 김영진;조효진;유선녕;김광연;김형락;안순철
    • 한국수산과학회지
    • /
    • 제40권6호
    • /
    • pp.356-361
    • /
    • 2007
  • Recently, the development of various culture-independent identification techniques for environmental microbes has greatly enhanced our knowledge of microbial diversity. In particular, denaturing gradient gel electrophoresis (DGGE) of 16S rDNA fragments, generated using the polymerase chain reaction (PCR) is frequently used to examine the diversity of environmental bacterial populations. This method consists of direct extraction of the environmental DNA, amplification of the 200-600 bp 16S rDNA fragments with universal primers, and separation of the fragments according to their melting point on a denaturing gradient gel. In this study, we investigated the seaside microbial community in coastal areas of Busan, Korea, using culture-independent techniques. First, marine genomic DNA was extracted from seawater samples collected at Songjeong, Gwangahn, and Songdo Beaches. Then, PCR was used to amplify the bacterial 16S rDNA using universal primers, and DGGE was used to separate the amplified 500 bp 16S rDNA fragments. Finally, the tested 16S rDNA genes were further analyzed by sequencing. Based on these experiments, we found that DGGE analysis clearly showed variation among the regional groups. It can be used to monitor rapid changes in the bacterial diversity of various environments. In addition, the sequence analysis indicated the existence of many unculturable bacteria, in addition to Arcobacter, Pseudoaltermonas, and Vibrio species.

고추좀잠자리 (Sympetrum depressiusculum)로부터 분리한 리그닌 분해균주, Serratia marcescens HY-5의 특성 (Characterization of a Ligninase Producing Strain, Serratia marcescens HY-5 isolated from Sympetrum dopressiusculum)

  • 김기덕;박두상;신동하;한보나;오현우;윤영남;박호용
    • 한국응용곤충학회지
    • /
    • 제45권3호
    • /
    • pp.301-307
    • /
    • 2006
  • 고추좀잠자리의 장으로부터 리그닌 분해활성을 보이는 미생물을 분리하였으며 16s rDNA 서열분석 및 생리 생화학적 동정에 의해 Serratia marcescens에 속하는 새로운 균주로 밝혀졌다. 분리된 균주는 리그닌 화합물을 포함하는 배지에서 배양하였을 때 cell growth의 증가에 따라 리그닌 화합물에 대한 분해능이 증가하였으며 48시간의 배양에 의해 20-45%의 분해능을 나타내었고, 특히 monomer 화합물인 vanillin 및 guaiacol과 dimer 화합물인 dealkaline 리그닌에 대한 분해능이 높았다. 분리된 균주 S. marcescens HY-5는 PCR에 의한 16S rDNA의 증폭과 denaturing gradient gel electrophoresis에 의한 장내 세균의 분포를 조사하였을 때 높은 밀도의 분포를 나타내었으며 서로 다른 지역에서 채집된 고추좀잠자리에서 공통적으로 발견되는 특징을 보여주었다.