• Title/Summary/Keyword: 150MPa

Search Result 286, Processing Time 0.03 seconds

Evaluation on Mechanical and Mixing Properties of Ultra-high Strength Concrete with fck=150MPa (150MPa 초고강도 콘크리트의 배합 및 재료역학특성 평가 연구)

  • Kang, Hoon;Ahn, Jong-Mun;Shin, Sung-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.3
    • /
    • pp.113-120
    • /
    • 2010
  • Ultra-High Strength Concrete (UHSC) demands a clear presentation of its mechanical properties, as distinct from normal strength concrete, and an evaluation of the serviceability of high-rise buildings that use ultra-high strength concrete. Ultra-high strength concrete fck=150MPa was manufactured with pre-mix cement, and an experimental study was conducted to evaluate the mixing properties and compressive strength, with the major variables being unit cement contents, water-binder ratio, and type of pre-mix cement. The test result showed that 150MPa concrete requires about 6~7 minutes of mixing time until each of the materials (ordinary Portland cement, silica fume, blast-furnace slag powder and anhydrite) are sufficiently revitalized. The slump flow of fresh concrete was shown to be about 700~800mm with the proper viscosity. The average value of concrete compressive strength was shown to be about 70% in 7 days, 85% in 14 days, and 95% in 28 days, for 56 days of concrete material age.

Effect of Timing of Light Curing on the Shear Bond Strength of Three Self-adhesive Resin Cements

  • Yoo, Yeon-Kwon;Kim, Sung-Hun;Ryu, Jae-Jun;Ryu, Jae-Jun
    • Journal of Korean Dental Science
    • /
    • v.1 no.1
    • /
    • pp.28-34
    • /
    • 2008
  • Objectives. The objectives of this study were: 1) to compare the effect of varying timing of light curing on shear bond strength, and; 2) to compare the shear bond strength of three self-adhesive cements. Materials and methods. A total of 72 extracted non-carious teeth were divided into 24 for Unicem tests, 24 for Maxcem tests, and 24 for Biscem tests; they were assigned 3 * 2 subgroups of 12 teeth each. The specimens were prepared as follows: 1) The calculus and periodontal ligament were removed from the teeth; 2) The teeth were stored in normal saline; 3) The occlusal enamel of each tooth was removed using high-speed coarse diamond burs under water cooling, and; 4) Finally, the teeth were flattened by 600-grit silicone carbide paper disks. Resin blocks were adhered using either Unicem, Maxcem, or Biscem. Light curing timing was divided into two groups: U10, M10, and B10 were exposed to light after 10 seconds, and; U150, M150, and B150 on the other side were exposed to light after 150 seconds. Shear bond strength was measured by a Universal testing machine with cross head speed of 1mm/min. T-test and One way ANOVA were used for the statistical analysis of data. Results. The shear bond strength of U150 was not significantly higher than that of U10 (U150: 20.55.7Mpa, U10: 18.73.80Mpa). On the other hand, the shear bond strength of M150 was significantly higher than that of M10. The shear bond strength of B150 was also significantly higher than that of B10 (M150:14.45.7Mpa, M10: 9.94.2Mpa, B150: 24.38.3Mpa, B10: 17.27.3Mpa). When the light curing timing was 10sec after bonding, the shear bond strength of Unicem was highest; the shear bond strength of Biscem was highest when the light curing timing was 150sec after bonding (U10: 18.73.80Mpa, B150: 24.38.3Mpa). Significance. Since Unicem is less sensitive based on light curing timing, dentists seem to use it without considering the light curing timing. Maxcem showed the lowest bonding strength (especially M10). Thus, when using Maxcem, dentists need to delay the light curing after adhesion.

  • PDF

Development of Pre-Mix Cement for 150 MPa Ultra High Strength Concrete (설계강도 150 MPa 초고강도 콘크리트용 시멘트 결합재의 개발)

  • Hwang, Yin-Soong;Kim, Seong-Su;Cha, Wan-Ho;Kwon, O-Bong;Sohn, Yu-Shin;Lee, Seung-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.25-28
    • /
    • 2006
  • This study investigated pre-mixed cement combined with ordinary portland cement, BF and SF, in order to manufacture cement binder, which is possible to produce 150MPa ultra high strength concrete. The BF used in this study reduces and control hydration heat. It can also improve concrete fluidity, while AP increases hydration product and accelerates reaction of BF. SF has micro filler effect and makes pozzolanic reaction. It also fabricates high density internal organization. This developed pre-mixed cement can reduce hydration heat and increase hydration product. It is possible to fabricate high density organization and to secure homogeneity. The mock-up test of ultra high strength concrete showed excellent dispersibility and workability and indicated compressive strength more than 150MPa at 28 days.

  • PDF

Evaluation on High-Temperature Mechanical Properties of 150MPa Concrete Mixed with PP and NY Fiber (PP, NY섬유를 혼입한 150MPa 콘크리트의 고온역학적 특성)

  • Baek, Jae-Uk;Kim, Gyu-Yong;Yoon, Min-Ho;Hwang, Eui-Chul;Son, Min-Jae;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.5-6
    • /
    • 2017
  • Ultra high-strength concrete can prevent spalling by mixed ratio of PP and NY fiber. However, there is a lack of research on the deterioration of strength due to changes in mechanical properties after spalling prevention. In this study, the effect of high temperature on the mechanical properties of 150MPa concrete mixed with PP and NY fiber was evaluated. As a result, mixing PP and NY fiber is judge to be little effect on the mechanical properties of the 150MPa concrete at high temperature.

  • PDF

Mixing and Strength Properties of 150MPa Ultra High Strength Concrete (150MPa 초고강도 콘크리트 배합 및 강도발현 특성)

  • Ahn, Jong-Mun;Kang, Hoon;Kim, Jong-Keun;Shin, Sung-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.373-376
    • /
    • 2008
  • Ultra High Strength Concrete(UHSC) is necessary a clear presentation about mechanical property that is different from normal strength concrete and an evaluation of serviceability of high rise building which is used ultra high strength concrete. To mixing ultra high strength concrete with $f_{ck}$=150MPa pre-mix cement were manufactured and experimental study were conducted to evaluated on the mixing properties and compressive strength with major variables as unit cement contents, water-binder ratio and type of pre-mix cement. As a test result, it is shown that the concrete mixing time is required about 5$^{\sim}$6 minute untill the each materials(ordinary portland cement, silica fume, blast-furnace slag powder and anhydrite) are revitalized enough. A slump flow of fresh concrete are shown about 700$^{\sim}$750mm with proper viscosity. And average value of concrete compressive strength are shown about 77% in 7days, 87% in 14days and 102% in 56days for 28days of concrete material age. From this experimental study, a proper mixture proportion of pre-mix cement are recommended about 54$^{\sim}$59% OPC, 25$^{\sim}$30% blast-furnace slag powder and 10$^{\sim}$15% silica fume for mix the ultra high strength concrete with $f_{ck}$=150MPa.

  • PDF

High Pressure Inactivation of Alliinase and Its Effects on Flavor of Garlic (고압처리에 의한 Alliinase의 불활성화가 마늘의 풍미에 미치는 영향)

  • Sohn, Kyung-Hyun;Lim, Jae-Kag;Kong, Un-Young;Park, Ji-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.593-599
    • /
    • 1996
  • The effects of high pressure on alliinase and on flavor of garlic (Alliiium sativum L.) were investigated. After pressurized at 150 MPa, 300 MPa, and 500 MPa for 10 min, the activities of purified alliinase were reduced approximately 30%, 80%, and 100%, respectively, while the enzyme activities of pressurized garlic cloves were reduced 0%, 7%, and 100%, respectively. This indicated that the intact garlic has a protective effect against pressure-inactivation of alliinase. Alliinase was more effectively inactivated when high pressure treatment was carried out at high ($>40^{\circ}C$) or low temperature ($>10^{\circ}C$) than ambient temperature. Pressure treated garlic at 500 MPa had little pungency and sulfuryl odor compared to raw garlic indicating that high-pressure processing can be used to produce garlic without pungent flavor.

  • PDF

Development of 150 MPa Ultra High Strength Concrete (설계강도 150 MPa 초고강도 콘크리트 개발)

  • Sohn, Yu-Shin;Kim, Han-June;Kim, Gyu-Dong;Lee, Seung-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.29-32
    • /
    • 2006
  • The techniques related to ultra-high strength concrete(UHSC) became the key issue in recent days since requirements of the high-rise building which story is over than 100 gradually increases. Therefore, for the development of 150MPa UHSC this research is generally categorized by 4 parts: development of pre-mixed binders, evaluation for the fire performance of coarse aggregate, optimization of the mixture proportion, and mock-up test. Finally, based on the optimized mixture and its laboratory tests, mock-up test for wall and column specimens were carried out to simulate and evaluate the UHSC in real situation. The mechanical properties of core specimens were compared with the cylinder specimens made in laboratory. For instance, it showed the reasonable the results that the strength at the age of 91 days is 183MPa.

  • PDF