• Title/Summary/Keyword: 10GE

Search Result 1,719, Processing Time 0.041 seconds

Strain conservation in implantation -doped GeSi layers on Si(100)

  • Im, S.;Nicolet, M.A.
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.S1
    • /
    • pp.47-52
    • /
    • 1997
  • Metastable pseudomorphic GeSi layers grown by vapor phase epitaxy on Si(100) substrates were implanted at room temperature. The implantations were performed with 90 KeV As ions to a dose of $1\times 10^{13}\;\textrm{cm}^2$ for $Ge_{0.08}Si_{0.92}$ layers and 709 keV $BF_2^+$ ions to a dose of $3\times 10^{13}\;\textrm{cm}^2$ for $Ge_{0.06}Si_{0.94}$layers. The samples were subsequently annealed for short 10-40 s durations in a lamp furnace with a nitrogen ambient or for a long 30 min period in a vacuum tube furnace. For $Ge_{0.08}Si_{0.92}$samples annealed for a 30 min-longt duration at $700^{\circ}C$ the dopant activation can only reach 50% without introducing significant strain relaxaion whereas samples annealed for short 40s periods (at $850^{\circ}C$) can achieve more than 90% activation without a loss of strain, For $Ge_{0.06}Si_{0.94}$samples annealed for either 40s or 30min at $800^{\circ}C$ full electrical activation of the boron is exhibited in the GeSi epilayer without losing their strain. However when annealed at $900^{\circ}C$ the strain in both implanted and unimplanted layers is partly relaxed after 30min whereas it is not visibly relaxed after 40s.

  • PDF

A Study of Mg Capping Inside p-tert-butylcalix[4]arene Adsorbed on a Ge(100) Surface

  • Shin, Minjeong;Lee, Myungjin;Lee, Hangil
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.135-135
    • /
    • 2013
  • The electronic and adsorption structures of Mg and p-tert-butylcalix[4]arene (p-TBCA) adsorbed onto a Ge(100) surface under a variety of sample conditions were characterized using high-resolution photoemission spectroscopy (HRPES) and their corresponding DFT calculation results. Interestingly, after 0.10 ML p-TBCA molecules had been adsorbed onto a Ge(100) surface, subsequent adsorption of a small amount of metallic Mg (~0.10 ML) resulted in the formation of a capped structure inside the pre-adsorbed p-TBCA molecules. The adsorption structures resulting from further deposition of Mg (~0.50 ML) onto the Ge(100) surface were monitored based on the surface charge state and Mg 2s core level spectrum. Work function measurements clearly indicated the electronic structures of the Mg and p-TBCA adsorbed onto the Ge(100) surface. Moreover, we confirmed that three different adsorption structures are experimentally favorable at room temperature through DFT calculation results.

  • PDF

Growth Characteristics and Germanium Absorption of Rice Plant with Different Germanium Concentrations in Soil (토양중 게르마늄 농도에 따른 벼의 생육 특성 및 게르마늄 흡수)

  • Lee, Seong-Tae;Lee, Young-Han;Choi, Yong-Jo;Lee, Sang-Dae;Lee, Chun-Hee;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.1
    • /
    • pp.40-44
    • /
    • 2005
  • In order to obtain the basic information for agricultural utilization of Germanium(Ge), the growth characteristics and Ge absorption of rice plant were investigated with different Ge concentration in soil. Ge concentrations were treated with 0, 2.5, 5.0 7.5 and 10.0 mg/kg in pot(1/5,000a), respectively. As higher the Ge concentration in soil, the Ge absorption amount in straw, husk and brown rice were increased. But the yields were decreased with the increase of Ge phytotoxicity. When rice plant was grown more than 2.5 mg/kg Ge(as $GeO_2$) in the soil, growth was inhibited by germanium phytotoxicity and necrosis spots were observed in the rice leaf blades. Therefore the optimum concentration of Ge was less than 2.5 mg/kg in rice plant. When rice plant was cultivated on soil supplemented with 2.5 mg/kg Ge, Ge content in straw, husk and brown rice was 103.4, 30.2 and 3.02 mg/kg, respectively. The Ge content in plant was high in the order of straw > husk > brown rice. Most of the amino acids in rice were increased with the increase of Ge treatment, besides, total amino acid contents also increased.

SiGe Alloys for Electronic Device Applications (실리콘-게르마늄 합금의 전자 소자 응용)

  • Lee, Seung-Yun
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.2
    • /
    • pp.77-85
    • /
    • 2011
  • The silicon-germanium (SiGe) alloy, which is compatible with silicon semiconductor technology and has a smaller band gap and a lower thermal conductivity than silicon, has been used to fabricate electronic devices such as transistors, photodetectors, solar cells, and thermoelectric devices. This paper reviews the application of SiGe alloys to electronic devices and related technical issues. Since the SiGe alloy comprises germanium whose band gap is smaller than silicon, its band gap is also smaller than that of silicon irrespective of the ratio of silicon to germanium. This narrow band gap of SiGe enables the base thickness of bipolar transistors to decrease without a loss in current gain so that it is possible to improve the speed of bipolar transistors by adopting the SiGe-base. In addition, the conversion efficiency of solar cells is enhanced by the absorption of long-wavelength light in the SiGe absorption layer. Phonon scattering caused by the irregular distribution of alloying elements induces the lower thermal conductivity of SiGe than those of pure silicon and germanium. Because a thin film layer with a low thermal conductivity suppresses thermal conduction through a thermal sink, the SiGe alloy is considered to be a promising material for silicon-based thermoelectric systems.

Effect of Organic or Inorganic Selenium and Germanium on Growth Stage of Rice (벼 생육단계별 유기 또는 무기 셀레늄(Selenium)과 게르마늄(Germanium)의 처리효과)

  • Kim, Yeon-Su;Chun, Jin-Hyuk;Jeon, Young-Ji;Woo, Hyun-Nyung;Kim, Sun-Ju
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.2
    • /
    • pp.96-103
    • /
    • 2019
  • BACKGROUND: This study was conducted to develop selenium (Se)- and germanium (Ge)-enriched rice by foliar spray application of organic or inorganic Se and Ge. METHODS AND RESULTS: The time and frequency of organic or inorganic Se and Ge treatment were performed at the five main growth stages as followings: effective tillering stage (E), maximum tillering stage (M), booting stage (B), heading stage (H), grain filling stage (G). The main treatment plots were consisted of (1) 'once' treatment (at each E, M, B, H, G stage, Se/Ge single apply), (2) 'twice I' (at H + G stages, organic or inorganic Se/Ge apply), (3) 'twice II' (at H + G stages, mixture apply of Se + Ge + pesticide). The organic or inorganic Se treatment concentration was 20 and 40 ppm, and the Ge was 50 and 100 ppm. The Se and Ge contents in rice grain (brown rice and polished rice) were analyzed by inductively coupled plasma (ICP). The highest Se content was noted in brown rice 'twice I' with Se 40 ppm (1394.06) at H + G stages, but the lowest was in 'once' with Se 40 ppm ($367.79{\mu}g{\cdot}kg^{-1}$) at B stage. The highest of Se content in polished rice was found in 'twice I' of Se 40 ppm (1090.25) at H + G stages, but the lowest was in 'once' with Se 40 ppm ($403.53{\mu}g{\cdot}kg^{-1}$) at E stage. On the other hand, The highest of Ge content in brown rice was found in 'twice I' with Ge 100 ppm (398.66) at H + G stages, but the lowest was in 'once' with Ge 100 ppm ($139.64{\mu}g{\cdot}kg^{-1}$) at B stage. The highest of Ge content in polished rice was found in 'twice I' of Ge 100 ppm (300.29) at H + G stages, but the lowest was in 'once' with Ge 100 ppm ($142.24{\mu}g{\cdot}kg^{-1}$) at B stage. CONCLUSION: Se and Ge contents both in brown rice and polished rice treated with organic Se and Ge forms were higher than those of inorganic Se and Ge. Overall results concluded that the supplementation of organic Se and Ge contents in brown and polished rice contents were comparatively higher than the inorganic Se and Ge. This is results also proved that the foliar spray application of organic Se and Ge has positive nutritive effect on the rice for regular consumption.

The Study on the Electrical and Optical Properties of As-Se-Ge Chalcogenide Glasses (As-Se-Ge계 칼코게나이드 유리의 전기적.광학적 성질에 관한 연구)

  • 이명원;강원호;이기암;박창만
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.3 no.2
    • /
    • pp.140-148
    • /
    • 1993
  • In this study, the electrical and optical properties of amorphous, crystallization and thin film of As-Ge-Se Chalcogenide System was investigated. Typical composition of this material has $As_{20~50}Se_{40~70} and Ge_{10~40}$ at%. Materials having Se was fixed to 40 at% and As was above 30 at% much more increased the electrical conductivity. After crystallization at the temperature of $476^{\circ}C$ for 3 hour was showed the best electrical conductivity of 1.74E-13$(\Omega cm)^{-l}$. And the main crystalline phase of this sample can be investigated using the mixed crystalline, i.e, $GeSe_2 and As_2Se_3$ phases. The thin film shows the optical absorption coefficient in the range $2{times}10^3 to 7{times}10^4$ and the optical energy gap of 1.85eV.

  • PDF

Study on Nucleation and Evolution Process of Ge Nano-islands on Si(001) Using Atomic Force Microscopy (AFM을 이용한 Si (001) 표면에 Ge 나노점의 형성과 성장과정에 관한 연구)

  • Park, J.S.;Lee, S.H.;Choia, M.S.;Song, D.S.;Leec, S.S.;Kwak, D.W.;Kim, D.H.;Yang, W.C.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.3
    • /
    • pp.226-233
    • /
    • 2008
  • The nucleation and evolution process of Ge nano-islands on Si(001) surfaces grown by chemical vapor deposition have been explored using atomic force microscopy (AFM). The Ge nano-islands are grown by exposing the substrates to a mixture of gasses GeH4 and H2 at pressure of 0.1-0.5Torr and temperatures of $600-650^{\circ}C$. The effect of growth conditions such as temperature, Ge thickness, annealing time on the shape, size, number density, and surface distribution was investigated. For Ge deposition greater than ${\sim}5$ monolayer (ML) with a growth rate of ${\sim}0.1ML/sec$ at $600^{\circ}C$, we observed island nucleation on the surface indicating the transition from strained layer to island structure. Further deposition of Ge led to shape transition from initial pyramid and hut to dome and superdome structure. The lateral average size of the islands increased from ${\sim}20nm$ to ${\sim}310nm$ while the number density decreased from $4{\times}10^{18}$ to $5{\times}10^8cm^{-2}$ during the shape transition process. In contrast, for the samples grown at a relatively higher temperature of $650^{\circ}C$ the morphology of the islands showed that the dome shape is dominant over the pyramid shape. The further deposition of Ge led to transition from the dome to the superdome shape. The evolution of shape, size, and surface distribution is related to energy minimization of the islands and surface diffusion of Ge adatoms. In particular, we found that the initially nucleated islands did not grow through long-range interaction between whole islands on the surface but via local interaction between the neighbor islands by investigation of the inter-islands distance.

A Study on Contact Resistance Reduction in Ni Germanide/Ge using Sb Interlayer

  • Kim, Jeyoung;Li, Meng;Lee, Ga-Won;Oh, Jungwoo;Lee, Hi-Deok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.2
    • /
    • pp.210-214
    • /
    • 2016
  • In this paper, the decrease in the contact resistance of Ni germanide/Ge contact was studied as a function of the thickness of the antimony (Sb) interlayer for high performance Ge MOSFETs. Sb layers with various thickness of 2, 5, 8 and 12 nm were deposited by RF-Magnetron sputter on n-type Ge on Si wafers, followed by in situ deposition of 15nm-thick Ni film. The contact resistance of samples with the Sb interlayer was lower than that of the reference sample without the Sb interlayer. We found that the Sb interlayer can lower the contact resistance of Ni germanide/Ge contact but the reduction of contact resistance becomes saturated as the Sb interlayer thickness increases. The proposed method is useful for high performance n-channel Ge MOSFETs.

Strained Ge Light Emitter with Ge on Dual Insulators for Improved Thermal Conduction and Optical Insulation

  • Kim, Youngmin;Petykiewicz, Jan;Gupta, Shashank;Vuckovic, Jelena;Saraswat, Krishna C.;Nam, Donguk
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.5
    • /
    • pp.318-323
    • /
    • 2015
  • We present a new way to create a thermally stable, highly strained germanium (Ge) optical resonator using a novel Ge-on-dual-insulators substrate. Instead of using a conventional way to undercut the oxide layer of a Ge-on-single-insulator substrate for inducing tensile strain in germanium, we use thin aluminum oxide as a sacrificial layer. By eliminating the air gap underneath the active germanium layer, we achieve an optically insulating, thermally conductive, and highly strained Ge resonator structure that is critical for a practical germanium laser. Using Raman spectroscopy and photoluminescence experiments, we prove that the novel geometry of our Ge resonator structure provides a significant improvement in thermal stability while maintaining good optical confinement.

The Optical Characteristics og Te$_{85}Ge_{15}$ Alloy According to Phase Transition (Te$_{85}Ge_{15}$ alloy의 상변화에 따른 광학적 연구)

  • 김병훈;모연한;이영종;정홍배;김종빈
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1989.06a
    • /
    • pp.111-113
    • /
    • 1989
  • This paper reports the optical characteristics of TeS$_{5}$ Ge$_{5}$ thin film. In phase diagram, TeS$_{5}$ Ge$_{5}$ has the eutetic point with the loweat melting point. Therfore, TeS$_{5}$ Ge$_{5}$ thin film will be melted by Diode Laser with low energy. TeS$_{5}$ Ge$_{5}$ thin films start to change the phase from amorphous to crystalline near 10$0^{\circ}C$, but perfectly change the phase at 28$0^{\circ}C$. As-deposit TeS$_{5}$ Ge$_{5}$ thin film start to change the phase to crystalline in enviroment og 66$^{\circ}C$ 80%RH.circ}C$ 80%RH.

  • PDF