• Title/Summary/Keyword: 1064 nm

Search Result 140, Processing Time 0.024 seconds

Preparation and Nonlinear Optical Properties of Novel Polyesters with Enhanced Thermal Stability of Second Harmonic Generation

  • Kim, Jin-Hyang;Won, Dong-Seon;Lee, Ju-Yeon
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.1
    • /
    • pp.181-186
    • /
    • 2008
  • 2,5-Di-(2'-hydroxyethoxy)-4'-nitrostilbene (3) was prepared and polycondensed with terephthaloyl chloride, adipoyl chloride, and sebacoyl chloride to yield novel T-type polyesters (4-6) containing the NLO-chromophores dioxynitrostilbenyl groups, which constituted parts of the polymer backbones. Polymers 4-6 are soluble in common organic solvents such as acetone and N,N-dimethylformamide. They showed thermal stability up to 260 oC in thermogravimetric analysis with glass-transition temperatures obtained from differential scanning calorimetry in the range 90-95 oC. The second harmonic generation (SHG) coefficients (d33) of poled polymer films at the 1064 nm fundamental wavelength were around 1.42 ´ 10-9 esu. The dipole alignment exhibited high thermal stability up to 5 oC higher than glass-transition temperature (Tg), and there was no SHG decay below 100 oC due to the partial main-chain character of polymer structure, which is acceptable for NLO device applications.

The Effects of Ambient Ions on the Growth of Gold Nanoparticles by Laser Ablation in Liquid

  • Kwon, Hyejin;Kim, Kuk Ki;Song, Jae Kyu;Park, Seung Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.865-870
    • /
    • 2014
  • Gold nanoparticles (AuNPs) were synthesized by laser (Nd:YAG, ${\lambda}$ = 1064 nm) ablation of a gold target immersed in various aqueous electrolyte solutions (7 mM of LiCl, NaCl, KCl, NaBr, and NaI) as well as in deionized water. The surface plasmon absorption and EDX of AuNPs so produced as well as their TEM images were analyzed to investigate the effects of ambient ions on the growth and aggregation of NPs. The size of AuNPs was reduced by laser ablation in the presence of chloride and bromide ions while it increased drastically when AuNPs were formed in iodide solution. Interestingly, triangular nanoplates were synthesized only in iodide solution. Surface chemistry on AuNPs in various electrolyte solutions was explored to elucidate the role of ions on the size and stability of AuNPs.

Flip-chip Bonding Using Nd:YAG Laser (Nd:YAG 레이저를 이용한 Flipchip 접합)

  • Song, Chun-Sam;Ji, Hyun-Sik;Kim, Jong-Hyeong;Kim, Joo-Hyun;Kim, Joo-Han
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.1
    • /
    • pp.120-125
    • /
    • 2008
  • A flip-chip bonding system using DPSS(Diode Pumped Solid State) Nd:YAG laser(wavelength : 1064nm) which shows a good quality in fine pitch bonding is developed. This laser bonder can transfer beam energy to the solder directly and melt it without any physical contact by scanning a bare chip. By using a laser source to heat up the solder balls directly, it can reduce heat loss and any defects such as bridge with adjacent solder, overheating problems, and chip breakage. Comparing to conventional flip-chip bonders, the bonding time can be shortened drastically. This laser precision micro bonder can be applied to flip-chip bonding with many advantage in comparison with conventional ones.

Nano-Second Periodically Poled Lithium Niobate Optical Parametric Oscillator with Planar Cavity Mirrors

  • Kim, Hong-Ki;Rhee, Bum--Ku
    • Journal of the Optical Society of Korea
    • /
    • v.5 no.4
    • /
    • pp.136-139
    • /
    • 2001
  • We investigated a high-output ower, periodically poled lithium niobate(PPLN) optical parametric oscillator(OPO) pumped by a Q-switched Nd:YAG laser. Given the low optical damage threshold and the limited aperture (0.5mm thick) of PPLN, we tried to maximize the signal output power in a linear cavity consisting of two flat mirrors with a loosely focused pump beam. It is found that this simple cavity structure allowed a robust OPO operation, which was not sensitive to alignment compared with the conventional ones using concave mirrors. A maximum energy of 100$\mu$J/pulse was achieved for the signal at 1.36${\mu}{\textrm}{m}$, while the oscillation threshold was 0.3 mJ/pulse for the pump at 1064 nm.

LASER MICROWELDING FOR ELECTRICAL INTERCONNECTION IN BIOMEDICAL TECHNOLOGY (의료용 전기 접점부의 마이크로 레이저 용접)

  • ;B.K. Paul;J. Boogaard
    • Proceedings of the KWS Conference
    • /
    • 2003.11a
    • /
    • pp.45-48
    • /
    • 2003
  • Over the past few decades, there has been increasing research and commercial activity in invasive and non-invasive biomedical technology. One important challenge to developing these devices involves the increasing density of electrical interconnects. Resistance spot welding is limited in the density of interconnect based on either the size of welding head or the positional precision with which a weld can be made. Development of an automated laser microwelding system would permit the continued advancement of these important biomedical technologies. The objective of this work is to demonstrate the application of pseudo-pulse Nd:YAG laser technology as an alternative to resistance spot welding in performing electrical interconnection within biomedical products. To date, some experiments have been conducted by using a pseudo-pulse 1064 nm Nd:YAG laser, a successful weld of a 25 ${\mu}{\textrm}{m}$ diameter Pt/Ir wire to a 316 stainless steel shim can be made. Another application involves welding clips, which may be used for external interconnection, to electrodeposited nickel domes that make particular interconnections to specific insulated wires within a cable. These results show a great deal of promise for developing such a process.

  • PDF

Bonding and Physical Characteristics of Diamond-like Carbon Films Prepared by Laser Ablation (레이저 어블레이션에 의해 증착된 비정질 다이아몬드 박막의 결합및 물리적 특성)

  • Park, Hwan-Tae;Hong, Young-Kyu;Kim, Jae-Ki;Kim, Jin-Seung;Park, Chan
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.1
    • /
    • pp.1-5
    • /
    • 1996
  • Noncrystalline films of diamond-like carbon (DLC) have been prepared by laser ablation technique at room temperature. A Q-switched Nd-YAG laser beam with wavelength of 1064 nm and pulse duration of 10 ns was focused onto a graphite target with power densities of about $10^9 W/\textrm{cm}^2$. The physical properties of the resulting films were analyzed with density, hardness, and resistivity measurements. The surface and bonding structure were investigated by atomic force microscopy (AFM), Raman spectroscopy, electron energy loss spectroscopy (EELS).

  • PDF

Development of a Hybrid DPSSL with a Pulse Parameter Variable LD Seed (광펄스 파라미터 가변 LD를 이용한 복합형 DPSSL 개발)

  • Noh, Young-Chul;Shin, Woo-Jin;Yu, Bong-Ahn;Lee, Yeung-Lak;Jung, Chang-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.10
    • /
    • pp.7-13
    • /
    • 2010
  • We report a hybrid DPSSL with a pulse parameter variable LD seed, all-fiberized polarization-maintained pulsed Yb-doped fiber preamplifier chains, and a bulk Nd:$YVO_4$ power amplifier. Pulse parameter of LD seed was controlled by direct current modulation. The hybrid DPSSL generates 1064 nm laser pulses with an average power of 40W, a pulse duration of 20-40ns, and a repetition rate of 100-500kHz.

Power Dependence on Formation of Polyynes by Laser Ablation in Water

  • Park, Young Eun;Shin, Seung Keun;Park, Seung Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1039-1042
    • /
    • 2013
  • Polyynes were prepared by liquid laser ablation of a graphite target in deionized water at various physical conditions such as laser power (20 and 40 mJ/pulse) and ablation wavelengths (355, 532, and 1064 nm). The effects of physical parameters on the linear carbon chain length were examined by analyzing the densities of polyynes with different carbon numbers ($C_6H_2$, $C_8H_2$, and $C_{10}H_2$) as well as their branching ratios. We concluded the photophysical processes turned out to play a more significant role than thermal ones in the formation of polyynes.

The Solvent Effects on the Formation of Polyynes by Laser Ablation

  • Park, Young-Eun;Shin, Seung-Keun;Park, Seung-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2439-2442
    • /
    • 2012
  • In order to explore the effects of the solvent on the formation rate of polyynes, we investigated the absorption spectra of polyynes obtained by laser ablation of a graphite target in different solvents at 1064 nm. Polyynes so produced were confirmed by the Raman band around $2200cm^{-1}$ which corresponds to the carbon triple bonds. The production of polyynes by laser ablation turned out to be significantly affected by the ratio of the hydrogen and carbon atoms in the solvent molecule. No clear correlations were observed in the formation of polyynes for other properties of the solvent such bond dissociation energy, thermal conductivity, and total mass of hydrogen atoms per volume of solvent.

CW Laser Generation form Nd;YAG Single Crystal Grown by Czochralski Method (Czochralski 방법으로 육성된 Nd:YAG 단결정으로부터 CW mode laser 의 발진)

  • 이상호;배소익;김한태;정수진
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1997.08a
    • /
    • pp.85-85
    • /
    • 1997
  • Czochralski 방법에 의해 육성된 Nd:YAG 단결정으로부터 CW mode의 1064nm laser를 발진시켰다. 육성된 단결정은 직경 50mm, 길이 120mm 이었으며, Nd 이온 농도는 O.2~0.9at% 이었다. 육성된 단결정 boule로 부터 결정학적 결함부위인 core 및 facet가 없는 양질의 단결정 부위를 Twyman-Green interferometer로 선빌하였다. 추출핀 부위는 절단, 가공, 연마공정 및 코팅 공정을 통해 직경 6.35mm, 길이 lOOmm의 laser rod를 제작하였다. 절단은 core drill, 또는 원통 연삭기를 사용하여 rod 형태로 가공하였으며, 상$\cdot$하면 polishing은 평행도 10", 직각도 5', 평활도 $\lambda$/10 수준까지 실험실에서 자체 가공하여 일반적인 laser 발진용 rod의 spec.을 만족시킬 수 있었다.

  • PDF