• Title/Summary/Keyword: 10-hydroxystearic acid

Search Result 6, Processing Time 0.025 seconds

Study on the Storage Stability of Horse Fat in Jeju (제주산 말지방(Horse Fat)의 저장 안정성 향상에 관한 연구)

  • Kim, Mi Seon;Yoon, Kyung-Sup
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.46 no.1
    • /
    • pp.31-42
    • /
    • 2020
  • Horse fat is known to be an effective ingredient in Asia, and the horse fat itself, which is mixed with other ingredients at the additive level, is often sold as a finished product. In this case, physical properties of the horse fat raw material are important. Many horse fats produced in Korea (Jeju) have low temperature stability, so if not stored at low temperatures, segregation may occur. In the case of Japanese horse fat, it is partially hydrogenated or is used the solid phase as the horse fat by separating the liquid phase and the solid phase that is harder and more stable than the horse fat of Jeju. In this study, the physical properties were tested to improve the temperature stability even without the partial hydrogenation process of Jeju horse fat. Various oil gelling agents were used in the study. Results confirmed that the physical properties of the hydroxystearic acid added Jeju horse fat were improved. In addition, stability evaluations at temperatures of 25 ℃, 40 ℃, 45 ℃ and flow behavior evaluations at temperatures of 25 ℃, 30 ℃, 40 ℃ were performed for Jeju horse fat with hydroxystearic acid, 100% Jeju horse fat, and 100% Japanese horse fat. Results showed that the Jeju horse fat improved in flow behavior by adding hydroxystearic acid similar to that of Japanese horse fat. In addition, when the crystal state was observed under a microscope, the thermal stability was improved by decreasing the size of the needle-type crystals with the addition of hydroxystearic acid. Jeju horse fat containing hydroxystearic acid was found to have no physical problems even when stored at room temperature for a long time.

Production and Recovery of Oxygenated Fatty Acids from Oleic Acid by Flavobacterium sp. Strain DS5 (Flavobacterium sp. Strain DS5에 의한 Oleic Acid로부터 산화 지방산의 생산 및 회수)

  • Heo, Shin-Haeng;Kim, Beom Soo
    • Korean Chemical Engineering Research
    • /
    • v.47 no.5
    • /
    • pp.620-623
    • /
    • 2009
  • Flavobacterium sp. strain DS5(NRRL B-14859) was used to convert oleic acid to 10-ketostearic acid(10-KSA) via 10-hydroxystearic acid(10-HSA). Increase in cell concentration by centrifuging, collecting cells grown in two flasks, and resuspending in one flask, improved 10-KSA production to 6.5 g/L from 3.5 g/L in a usual flask culture. Tween-80 addition to the culture did not greatly affect the production of 10-KSA and 10-HSA. When culture broth was centrifuged after fermentation, it was observed that pellets were separated into two parts(yellow and white). Gas chromatography analysis showed that 10-KSA and 10-HSA were detected only in a white pellet, suggesting that the bioconversion products of strain DS5 are extracellularly produced and can be easily recovered from cells by a simple centrifugation step.

Production and Analysis of Oxygenated Unsaturated Fatty Acids from Oleic Acid by Flavobacterium sp. Strain DS5 (Flavobacterium sp. Strain DS5에 의한 Oleic Acid로부터 산화불포화 지방산의 생산 및 분석)

  • Song, Byung-Seob;Han, Nam-Soo;Lee, Bong-Hee;Hou, Ching T.;Kim, Beom-Soo
    • KSBB Journal
    • /
    • v.24 no.1
    • /
    • pp.41-46
    • /
    • 2009
  • Vegetable oils are desirable inexpensive feedstocks for various bioproducts. The content of unsaturated fatty acids such as oleic and linoleic acids are 22% and 55% for soybean oil, 26% and 60% for corn oil, and 61% and 21% for canola oil, respectively. Keto and hydroxy fatty acids are useful industrial chemicals, used in plasticizer, surfactant, lubricant and detergent formulations because of their special chemical properties such as higher viscosity and reactivity compared with other fatty acids. In this study, a microbial isolate, Flavobacterium sp. strain DS5 (NRRL B-14859), was used to convert oleic acid to 10-ketostearic acid (10-KSA) via 10-hydroxystearic acid (10-HSA). Two bioconversion products, 10-KSA and 10-HSA, were quantitatively and qualitatively analyzed using gas chromatography, gas chromatography-mass spectrometry, and $^1H-$ and $^{13}C$-nuclear magnetic resonance. The maximum production of 10-KSA and 10-HSA in flask cultures were 3.4 g/L and 0.5 g/L, respectively. The optimum concentrations of glucose and yeast extract, addition time and volume of oleic acid for 10-KSA production were less than 20 g/L, more than 5 g/L, 18 hand 0.3 ml/50 ml, respectively.

Open-Cell Rigid Polyurethane Foam Using Reactive Cell Opening Agents (반응성 기포개방제를 이용한 개방기포형 경질우레탄폼)

  • Ahn, WonSool
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2524-2528
    • /
    • 2013
  • Cell opening characteristics dependent on the cell openers for the conventional formulation of a closed-cell polyurethane foam (PUF) was studied using 1-butanol and lithium salt of 12-hydroxystearic acid (Li-12HSA) as the reactive cell opening agents. While cell openining content of only 10.5 % was obtained for the sample with 4 phr of 1-butanol as the single reactive cell opener, that of 98.0% could be obtained for the sample with 2 phr of Li-12HSA as the reactive co-cell opener. As the results, it showed that a fully open-cell rigid PUF could be obtained by introducing a novel reactive cell opener, having a functional group able to form a bulky side-chain on the urethane networks, without severe loss of mechanical properties of the closed-cell PUF like cell size, bulk density, and thermal conductivity.

A Study on the Synthesis and Tribological Characteristics of Calcium Sulfonate Grease with Improved Low-temperature Performance (저온 성능이 향상된 Calcium Sulfonate 그리스의 합성 및 트라이볼로지 특성 연구)

  • Gwang-Tae Kim;Hyun-Ho Park;Chang-Seop Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.4
    • /
    • pp.434-443
    • /
    • 2023
  • We have investigated the performance improvement of grease by synthesizing calcium sulfonate grease as an alternative to lithium grease, which is widely used globally. Since the composition ratio of the grease, when manufactured, is usually 50% base oil and 50% thickener, using grease as a lubricant in a cryogenic environment is not encouraged due to its inferior low-temperature performance. In this study, we have synthesized three types of calcium sulfonate grease with paraffin oil and PAO-based base oil and thickener. Furthermore, lithium grease was synthesized via saponification with PAO-based base oil, lithium hydroxide, 12-hydroxystearic acid, and sebacic acid. We have measured low-temperature characteristics using a rheometer and low-temperature torque meter, and tribology characteristics were obtained using a four-ball lubricant tester and schwingung reibung verschleiß (SRV). As a result, the flow point of the calcium sulfonate grease synthesized with a PAO-based base oil and thickener was found to be -40℃, overcoming the existing calcium sulfonate grease's low-temperature limitation. Moreover, the synthesized calcium sulfonate grease showed low-temperature performance similar to that of lithium grease synthesized with PAO base oil, but superior anti-wear, extreme pressure, coefficient of friction, heat resistance, adhesion, and corrosion resistance. It is thus expected to commercially replace the existing lithium grease.

A Study on the Formation of Lamellar Liquid Crystalline Using Skin Mimicking Surfactant (피부모사체 계면활성제를 사용한 라멜라 액정의 생성에 관한 연구)

  • Kim, In-Young;Nam, Eun-Hee;Shin, Moon-Sam
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.484-495
    • /
    • 2020
  • This study is a mixed surfactant (MimicLipid-MSM1000) that forms the same structure as that of the stratum corneum, sucrose distearate, polyglyceryl-2 dioleate, fermented squalane, ergosterol, 10-hydroxystearic acid, mixture consisting of was synthesized. When using 2~5 wt% of this mixed surfactant, it was possible to make an artificial skin mimetic that forms a multi-layer lamellar structure of 5~30 layers. An emulsion was prepared using this mixed surfactant, and a multi-layered lamellar phase was formed and analyzed mechanically. The appearance of this surfactant was a light brown hard wax, the hydrophilic lipophilic balance (HLB) was 12.53, the critical parameter value was 0.987, and the acid value was 0.13. Stability according to pH change was also stable in acidic (3.8), neutral (7.2) and alkaline (10.8). The particle size of the liquid crystal was found to be the most stable maltese cross lamellar crystalline droplet at 5~25mm. The size of the emulsified particles according to the change in the speed of the homo agitator is 2500 rpm (17.9mm±2.6mm), 3500rpm (12.5mm±2.1mm), 4500rpm (6.2mm±1.8mm) particles were formed. Liquid crystal forming particles were observed through a polarization microscope, and the formation structure of the liquid crystal was precisely analyzed with a scanning electron microscope (cryo-SEM). As an application field, it is expected that it will be widely applicable to the development of various prescriptions, such as various skin care cosmetics, makeup care cosmetics, and scalp protection cosmetics, by using a skin-mimicking surfactant.