• 제목/요약/키워드: 10-fold Validation

검색결과 248건 처리시간 0.035초

호흡곤란 환자 퇴원 결정을 위한 벌점 로지스틱 회귀모형 (Penalized logistic regression models for determining the discharge of dyspnea patients)

  • 박철용;계묘진
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권1호
    • /
    • pp.125-133
    • /
    • 2013
  • 이 논문에서는 호흡곤란을 주호소로 내원한 668명의 환자를 대상으로 11개 혈액검사 결과를 이용하여 퇴원여부를 결정하는 벌점 이항 로지스틱 회귀 기반 통계모형을 유도하였다. 구체적으로 $L^2$ 벌점에 근거한 능형 모형과 $L^1$ 벌점에 근거한 라소 모형을 고려하였다. 이 모형의 예측력 비교 대상으로는 일반 로지스틱 회귀의 11개 전체 변수를 사용한 모형과 변수선택된 모형이 사용되었다. 10-묶음 교차타당성 (10-fold cross-validation) 비교 결과 능형 모형의 예측력이 우수한 것으로 나타났다.

Prediction of concrete compressive strength using non-destructive test results

  • Erdal, Hamit;Erdal, Mursel;Simsek, Osman;Erdal, Halil Ibrahim
    • Computers and Concrete
    • /
    • 제21권4호
    • /
    • pp.407-417
    • /
    • 2018
  • Concrete which is a composite material is one of the most important construction materials. Compressive strength is a commonly used parameter for the assessment of concrete quality. Accurate prediction of concrete compressive strength is an important issue. In this study, we utilized an experimental procedure for the assessment of concrete quality. Firstly, the concrete mix was prepared according to C 20 type concrete, and slump of fresh concrete was about 20 cm. After the placement of fresh concrete to formworks, compaction was achieved using a vibrating screed. After 28 day period, a total of 100 core samples having 75 mm diameter were extracted. On the core samples pulse velocity determination tests and compressive strength tests were performed. Besides, Windsor probe penetration tests and Schmidt hammer tests were also performed. After setting up the data set, twelve artificial intelligence (AI) models compared for predicting the concrete compressive strength. These models can be divided into three categories (i) Functions (i.e., Linear Regression, Simple Linear Regression, Multilayer Perceptron, Support Vector Regression), (ii) Lazy-Learning Algorithms (i.e., IBk Linear NN Search, KStar, Locally Weighted Learning) (iii) Tree-Based Learning Algorithms (i.e., Decision Stump, Model Trees Regression, Random Forest, Random Tree, Reduced Error Pruning Tree). Four evaluation processes, four validation implements (i.e., 10-fold cross validation, 5-fold cross validation, 10% split sample validation & 20% split sample validation) are used to examine the performance of predictive models. This study shows that machine learning regression techniques are promising tools for predicting compressive strength of concrete.

음악추천을 위한 다중 옥타브 밴드 기반 장르 분류기 (Multiple octave-band based genre classification algorithm for music recommendation)

  • 임신철;장세진;이석필;김무영
    • 한국정보통신학회논문지
    • /
    • 제15권7호
    • /
    • pp.1487-1494
    • /
    • 2011
  • 본 논문은 음악 추천을 위한 새로운 장르 분류 알고리즘을 제안하였다. 특히, 장르 분류 알고리즘에 사용되는 특정 벡터 중 octave-based spectral contrast (OSC)의 성능 개선을 위해서 심리청각 모델과 악기별 사용 octave 범위에 근거하여 새로운 band-pass filter를 설계하였다. 10개 장르별 음악을 포함하고 있는 GTZAN database에 대해서 10-fold cross validation 실험 결과, 다중 옥타브 밴드 OSC에 대해서 기존 OSC에 비해 2.26% 향상된 인식율을 얻을 수 있었다. 또한, 기존의 mel-frequency cepstral coefficient (MFCC)와 복합 특징 벡터를 구성하여 실험한 결과, 향상된 인식율을 얻을 수 있었다.

다단계 구단위화를 이용한 고속 한국어 의존구조 분석 (High Speed Korean Dependency Analysis Using Cascaded Chunking)

  • 오진영;차정원
    • 한국시뮬레이션학회논문지
    • /
    • 제19권1호
    • /
    • pp.103-111
    • /
    • 2010
  • 한국어 처리에서 구문분석기에 대한 요구는 많은 반면 성능의 한계와 강건함의 부족으로 인해 채택되지 못하는 것이 현실이다. 본 연구는 구문분석을 레이블링 문제로 전환하여 성능, 속도, 강건함을 모두 실현한 시스템에 대해서 설명한다. 우리는 다단계 구 단위화(Cascaded Chunking)를 통해 한국어 구문분석을 시도한다. 각 단계에서는 어절별 품사 태그와 어절 구문표지를 자질로 사용하고 CRFs(Conditional Random Fields)를 이용하여 최적의 결과를 얻는다. 58,175문장 세종 구문 코퍼스로 10-fold Cross Validation(평균 10.97어절)으로 실험한 결과 평균 86.01%의 구문 정확도를 보였다. 이 결과는 기존에 제안되었던 구문분석기와 대등하거나 우수한 성능이며 기존 구문분석기가 처리하지 못하는 장문도 처리 가능하다.

Computational Detection of Prokaryotic Core Promoters in Genomic Sequences

  • Kim Ki-Bong;Sim Jeong Seop
    • Journal of Microbiology
    • /
    • 제43권5호
    • /
    • pp.411-416
    • /
    • 2005
  • The high-throughput sequencing of microbial genomes has resulted in the relatively rapid accumulation of an enormous amount of genomic sequence data. In this context, the problem posed by the detection of promoters in genomic DNA sequences via computational methods has attracted considerable research attention in recent years. This paper addresses the development of a predictive model, known as the dependence decomposition weight matrix model (DDWMM), which was designed to detect the core promoter region, including the -10 region and the transcription start sites (TSSs), in prokaryotic genomic DNA sequences. This is an issue of some importance with regard to genome annotation efforts. Our predictive model captures the most significant dependencies between positions (allowing for non­adjacent as well as adjacent dependencies) via the maximal dependence decomposition (MDD) procedure, which iteratively decomposes data sets into subsets, based on the significant dependence between positions in the promoter region to be modeled. Such dependencies may be intimately related to biological and structural concerns, since promoter elements are present in a variety of combinations, which are separated by various distances. In this respect, the DDWMM may prove to be appropriate with regard to the detection of core promoter regions and TSSs in long microbial genomic contigs. In order to demonstrate the effectiveness of our predictive model, we applied 10-fold cross-validation experiments on the 607 experimentally-verified promoter sequences, which evidenced good performance in terms of sensitivity.

지원벡터기계를 이용한 출혈을 일으킨 흰쥐에서의 생존 예측 (Survival Prediction of Rats with Hemorrhagic Shocks Using Support Vector Machine)

  • 장경환;최재림;유태근;권민경;김덕원
    • 대한의용생체공학회:의공학회지
    • /
    • 제33권1호
    • /
    • pp.1-7
    • /
    • 2012
  • Hemorrhagic shock is a common cause of death in emergency rooms. Early diagnosis of hemorrhagic shock makes it possible for physicians to treat patients successfully. Therefore, the purpose of this study was to select an optimal survival prediction model using physiological parameters for the two analyzed periods: two and five minutes before and after the bleeding end. We obtained heart rates, mean arterial pressures, respiration rates and temperatures from 45 rats. These physiological parameters were used for the training and testing data sets of survival prediction models using an artificial neural network (ANN) and support vector machine (SVM). We applied a 5-fold cross validation method to avoid over-fitting and to select the optimal survival prediction model. In conclusion, SVM model showed slightly better accuracy than ANN model for survival prediction during the entire analysis period.

인체측정조사에서 측정곤란부위 예측을 위한 의사결정나무 추천 모형 탐지에 관한 연구 (A Study on Exploration of the Recommended Model of Decision Tree to Predict a Hard-to-Measure Mesurement in Anthropometric Survey)

  • 최종후;김선경
    • 응용통계연구
    • /
    • 제22권5호
    • /
    • pp.923-935
    • /
    • 2009
  • 본 연구는 의사결정나무의 추천 모형 선택을 위한 비교실험에 초점을 두고 있다. 의사결정나무 모형은 구축된 모형에 기반을 두고 미래 관측치에 대한 예측 기능을 수행하게 될 것이므로 구축된 모형이 아무리 정치(精緻)하다고 하더라도 일반화의 성질을 충족시키지 못하면 실제성이 없게 된다. 따라서 본 연구는 교차타당성 검토를 통해 일반화의 성질을 충족시키면서 우수한 예측력을 갖는 추천 모형을 탐지하는 절차를 연구하는 데에 초점을 맞추고 있다. 사례 연구로 인체측정자료를 사용하여 측정곤란부위 예측을 위한 의사결정나무 추천 모형을 탐지한다. 그 결과 CART 모형 이 추천 모형으로 탐지되었다.

앙상블 SVM 모형을 이용한 기업 부도 예측 (Bankruptcy prediction using ensemble SVM model)

  • 최하나;임동훈
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권6호
    • /
    • pp.1113-1125
    • /
    • 2013
  • 기업의 부도를 예측하는 것은 회계나 재무 분야에서 중요한 연구주제이다. 지금까지 기업 부도예측을 위해 여러 가지 데이터마이닝 기법들이 적용되었으나 주로 단일 모형을 사용함으로서 복잡한 분류 문제에의 적용에 한계를 갖고 있었다. 본 논문에서는 최근에 각광받고 있는 SVM (support vector machine) 모형들을 결합한 앙상블 SVM 모형 (ensemble SVM model)을 부도예측에 사용하고자 한다. 제안된 앙상블 모형은 v-조각 교차 타당성 (v-fold cross-validation)에 의해 얻어진 여러 가지 모형 중에서 성능이 좋은 상위 k개의 단일 모형으로 구성하고 과반수 투표 방식 (majority voting)을 사용하여 미지의 클래스를 분류한다. 본 논문에서 제안된 앙상블 SVM 모형의 성능을 평가하기 위해 실제 기업의 재무비율 자료와 모의실험자료를 가지고 실험하였고, 실험결과 제안된 앙상블 모형이 여러 가지 평가척도 하에서 단일 SVM 모형들보다 좋은 성능을 보임을 알 수 있었다.

Feasibility study of deep learning based radiosensitivity prediction model of National Cancer Institute-60 cell lines using gene expression

  • Kim, Euidam;Chung, Yoonsun
    • Nuclear Engineering and Technology
    • /
    • 제54권4호
    • /
    • pp.1439-1448
    • /
    • 2022
  • Background: We investigated the feasibility of in vitro radiosensitivity prediction with gene expression using deep learning. Methods: A microarray gene expression of the National Cancer Institute-60 (NCI-60) panel was acquired from the Gene Expression Omnibus. The clonogenic surviving fractions at an absorbed dose of 2 Gy (SF2) from previous publications were used to measure in vitro radiosensitivity. The radiosensitivity prediction model was based on the convolutional neural network. The 6-fold cross-validation (CV) was applied to train and validate the model. Then, the leave-one-out cross-validation (LOOCV) was applied by using the large-errored samples as a validation set, to determine whether the error was from the high bias of the folded CV. The criteria for correct prediction were defined as an absolute error<0.01 or a relative error<10%. Results: Of the 174 triplicated samples of NCI-60, 171 samples were correctly predicted with the folded CV. Through an additional LOOCV, one more sample was correctly predicted, representing a prediction accuracy of 98.85% (172 out of 174 samples). The average relative error and absolute errors of 172 correctly predicted samples were 1.351±1.875% and 0.00596±0.00638, respectively. Conclusion: We demonstrated the feasibility of a deep learning-based in vitro radiosensitivity prediction using gene expression.

Analysis of Feature Variables for Breast Cancer Diagnosis

  • Jung, Yong Gyu;Kim, Jang Il;Sihn, Sung Chul;Heo, Jun
    • International journal of advanced smart convergence
    • /
    • 제2권2호
    • /
    • pp.36-39
    • /
    • 2013
  • It is becoming more important as the growing of health information and increasing in cancer patients diagnose over the time gradually. Among the various types of cancer, we focuses on breast cancer diagnosis. The accuracy of breast cancer diagnosis is increasing when the diagnosis is based on evidence and statistics. To do this we use the weka data mining tools and analysis algorithms significantly associated with the decision tree uses rules. In addition, the data pre-processing and cross-validation are used to increase the reliability of the results. The number and cause of the disease becomes important to increase evidence-based medical doctors. As the evidence-based medical, the data obtained from patients in the past through the disease by calculating the probability for future patients to diagnose and predict disease and treatment plan. It can be found by improving the survival rate plays an important role.