Browse > Article
http://dx.doi.org/10.1016/j.net.2021.10.020

Feasibility study of deep learning based radiosensitivity prediction model of National Cancer Institute-60 cell lines using gene expression  

Kim, Euidam (Department of Nuclear Engineering, Hanyang University)
Chung, Yoonsun (Department of Nuclear Engineering, Hanyang University)
Publication Information
Nuclear Engineering and Technology / v.54, no.4, 2022 , pp. 1439-1448 More about this Journal
Abstract
Background: We investigated the feasibility of in vitro radiosensitivity prediction with gene expression using deep learning. Methods: A microarray gene expression of the National Cancer Institute-60 (NCI-60) panel was acquired from the Gene Expression Omnibus. The clonogenic surviving fractions at an absorbed dose of 2 Gy (SF2) from previous publications were used to measure in vitro radiosensitivity. The radiosensitivity prediction model was based on the convolutional neural network. The 6-fold cross-validation (CV) was applied to train and validate the model. Then, the leave-one-out cross-validation (LOOCV) was applied by using the large-errored samples as a validation set, to determine whether the error was from the high bias of the folded CV. The criteria for correct prediction were defined as an absolute error<0.01 or a relative error<10%. Results: Of the 174 triplicated samples of NCI-60, 171 samples were correctly predicted with the folded CV. Through an additional LOOCV, one more sample was correctly predicted, representing a prediction accuracy of 98.85% (172 out of 174 samples). The average relative error and absolute errors of 172 correctly predicted samples were 1.351±1.875% and 0.00596±0.00638, respectively. Conclusion: We demonstrated the feasibility of a deep learning-based in vitro radiosensitivity prediction using gene expression.
Keywords
Radiosensitivity; Prediction; Deep learning; Gene expression; Survival fraction at 2Gy; Convolutional neural network;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M.R. Boyd, K.D. Paull, Some practical considerations and applications of the national cancer institute in vitro anticancer drug discovery screen, Drug Dev. Res. 34 (1995) 91-109.   DOI
2 X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, in: T. Yee Whye, T. Mike (Eds.), Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, PMLR, 2010, pp. 249-256.
3 G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, R.R. Salakhutdinov, Improving Neural Networks by Preventing Co-adaptation of Feature Detectors, 2012 arXiv preprint arXiv:12070580.
4 P. Meyer, V. Noblet, C. Mazzara, A. Lallement, Survey on deep learning for radiotherapy, Comput. Biol. Med. 98 (2018) 126-146.   DOI
5 T.D. Pfister, W.C. Reinhold, K. Agama, S. Gupta, S.A. Khin, R.J. Kinders, et al., Topoisomerase I levels in the NCI-60 cancer cell line panel determined by validated ELISA and microarray analysis and correlation with inden-oisoquinoline sensitivity, Mol. Cancer Therapeut. 8 (2009) 1878-1884.   DOI
6 D.G. Hirst, T. Robson, Molecular biology: the key to personalised treatment in radiation oncology? Br. J. Radiol. 83 (2010) 723-728.   DOI
7 A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, Adv. Neural Inf. Process. Syst. (2012) 1097-1105.
8 G.E. Dahl, T.N. Sainath, G.E. Hinton, Improving deep neural networks for LVCSR using rectified linear units and dropout, in: IEEE International Conference on Acoustics, Speech and Signal Processing 2013, 2013, pp. 8609-8613.
9 J.G. Scott, G. Sedor, P. Ellsworth, J.A. Scarborough, K.A. Ahmed, D.E. Oliver, et al., Pan-cancer prediction of radiotherapy benefit using genomic-adjusted radiation dose (GARD): a cohort-based pooled analysis, Lancet Oncol. 22 (2021) 1221-1229.   DOI
10 S.D. Bouffler, Evidence for variation in human radiosensitivity and its potential impact on radiological protection, Ann. ICRP 45 (2016) 280-289.   DOI
11 K. Ogawa, S. Murayama, M. Mori, Predicting the tumor response to radiotherapy using microarray analysis (Review), Oncol. Rep. 18 (2007) 1243-1248.
12 H.S. Kim, S.C. Kim, S.J. Kim, C.H. Park, H.C. Jeung, Y.B. Kim, et al., Identification of a radiosensitivity signature using integrative metaanalysis of published microarray data for NCI-60 cancer cells, BMC Genom. 13 (2012) 348.   DOI
13 J.F. Torres-Roca, S. Eschrich, H. Zhao, G. Bloom, J. Sung, S. McCarthy, et al., Prediction of radiosensitivity using a gene expression classifier, Cancer Res. 65 (2005) 7169-7176.   DOI
14 S. Ramaswamy, T.R. Golub, DNA microarrays in clinical oncology, J. Clin. Oncol. 20 (2002) 1932-1941.   DOI
15 L.J. Peters, W.A. Brock, J.D. Chapman, G. Wilson, Predictive assays of tumor radiocurability, Am. J. Clin. Oncol. 11 (1988) 275-287.   DOI
16 S. Eschrich, H. Zhang, H. Zhao, D. Boulware, J.H. Lee, G. Bloom, et al., Systems biology modeling of the radiosensitivity network: a biomarker discovery platform, Int. J. Radiat. Oncol. Biol. Phys. 75 (2009) 497-505.   DOI
17 M. Burkard, Integrating the NCI-60 data with "omics" for drug discovery, Drug Dev. Res. 73 (2012).
18 R.H. Shoemaker, The NCI60 human tumour cell line anticancer drug screen, Nat. Rev. Cancer 6 (2006) 813-823.   DOI
19 K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, Proceedings of the IEEE conference on computer vision and pattern recognition (2016) 770-778.
20 A.C. Begg, F.A. Stewart, C. Vens, Strategies to improve radiotherapy with targeted drugs, Nat. Rev. Cancer 11 (2011) 239-253.   DOI
21 V. Nair, G.E. Hinton, Rectified linear units improve restricted Boltzmann machines, in: Proceedings of the 27th International Conference on Machine Learning (ICML-10), 2010, pp. 807-814.
22 D. Silver, A. Huang, C.J. Maddison, A. Guez, L. Sifre, G. van den Driessche, et al., Mastering the game of Go with deep neural networks and tree search, Nature 529 (2016) 484-489.   DOI
23 S.J. Pan, Q. Yang, A survey on transfer learning, IEEE Trans. Knowl. Data Eng. 22 (2010) 1345-1359.   DOI
24 J.H. Oh, W. Choi, E. Ko, M. Kang, A. Tannenbaum, J.O. Deasy, PathCNN: interpretable convolutional neural networks for survival prediction and pathway analysis applied to glioblastoma, Bioinformatics 37 (2021) i443-i450.   DOI
25 A.L. Maas, A.Y. Hannun, A.Y. Ng, Rectifier nonlinearities improve neural network acoustic models, Proc icml: Cites (2013) 3.
26 C. Zhang, L. Girard, A. Das, S. Chen, G. Zheng, K. Song, Nonlinear quantitative radiation sensitivity prediction model based on NCI-60 cancer cell lines, Sci. World J. 2014 (2014) 903602.
27 J. Khan, J.S. Wei, M. Ringner, L.H. Saal, M. Ladanyi, F. Westermann, et al., Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks, Nat. Med. 7 (2001) 673-679.   DOI
28 S.A. Amundson, K.T. Do, L.C. Vinikoor, R.A. Lee, C.A. Koch-Paiz, J. Ahn, et al., Integrating global gene expression and radiation survival parameters across the 60 cell lines of the National Cancer Institute Anticancer Drug Screen, Cancer Res. 68 (2008) 415-424.   DOI