• Title/Summary/Keyword: 1.9GHz

Search Result 939, Processing Time 0.029 seconds

A study on the Design and Fabrication of Microstrip Array Antenna for Ultra Wideband Applications (초광대역 마이크로스트립 안테나의 설계와 제작에 관한 연구)

  • Ham, Min-Su;Choi, Byung-Ha
    • Journal of Navigation and Port Research
    • /
    • v.31 no.6
    • /
    • pp.503-507
    • /
    • 2007
  • In this paper, the ultra-widebend, microstrip patch antenna with the bandwidth of 3 GHz was implemented for ultra-wideband(UWB) wireless communication applications. In order to cover the very wide bandwidth of 3 GHz, a multi-resonance antenna was designed, each resonance frequency was separated into five frequency bend, 7.5, 8.1, 8.7, 9.3, and 9.9GHz with the interval of 600MHz BW. And for wideband characteristics of each antenna, U-slot antennas were designed at each center frequency. Designed five U-slot antennas were connected in series for multi-resonance of 3GHz BW and wideband matching was also designed for impedance matching transmission line calculated. The relative dielectric constant, the height, the loss tangent of the PCB substrate were ${\epsilon}_r=4.8,\;h=0.6$ and loss tangent=0.0009 respectively. The implemented antenna's radiation patterns and gain were directivity characteristics and $1.46{\sim}4.08dBi$ at the five separated center frequency.

A 77GHz MMIC Transceiver Module for Automotive Forward-Looking Radar Sensor

  • Kang, Dong-Min;Hong, Ju-Yeon;Shim, Jae-Yeob;Yoon, Hyung-Sup;Lee, Kyung-Ho
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.609-610
    • /
    • 2006
  • A 77GHz MMIC transceiver module consisting of a power amplifier, a low noise amplifier, a drive amplifier, a frequency doubler and a down-mixer has been developed for automotive forward-looking radar sensor. The MMIC chip set was fabricated using $0.15{\mu}m$ gate-length InGaAs/InAlAs/GaAs mHEMT process based on 4-inch substrate. The power amplifier demonstrated a measured small signal gain of over 20dB from $76{\sim}77GHz$ with 15.5dBm output power. The chip size is $2mm{\times}2mm$. The low noise amplifier achieved a gain of 20dB in a band between $76{\sim}77\;GHz$ with an output power of 10dBm. The chip size is $2.2mm{\times}2mm$. The driver amplifier exhibited a gain of 23dB over a $76{\sim}77\;GHz$ band with an output power of 13dBm. The chip size is $2.1mm{\times}2mm$. The frequency doubler achieved an output power of -16dBm at 76.5GHz with a conversion gain of -16dB for an input power of 10dBm and a 38.25GHz input frequency. The chip size is $1.2mm{\times}1.2mm$. The down-mixer demonstrated a measured conversion gain of over -9dB. The chip size is $1.3mm{\times}1.9mm$. The transceiver module achieved an output power of 10dBm in a band between $76{\sim}77GHz$ with a receiver P1dB of -28dBm. The module size is $8{\times}9.5{\times}2.4mm^3$. This MMIC transceiver module is suitable for the 77GHz automotive radar systems and related applications in W-band.

  • PDF

Frequency Characteristics of 2-Layer Spiral Planar Inductor (2층 나선형 박막 인덕터의 주파수 특성)

  • Kim, Jae-Wook;Ryu, Chang-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.4101-4106
    • /
    • 2011
  • In this study, we propose that the structures of 2-layer spiral planar inductors have a lower spiral coil and via increasing inductance in limited possession are and confirm the frequency characteristics. The structures of inductors have Si thickness of $300{\mu}m$, $SiO_2$ thickness of $7{\mu}m$. The width of Cu coils and the space between segments have $20{\mu}m$, respectively. The number of turns of coils have 3. The performance of spiral planar inductors was simulated to frequency characteristics for inductance, quality-factor, SRF(Self- Resonance Frequency) using HFSS. The 2-layer spiral planar inductors have inductance of 3.2nH over the frequency range of 0.8 to 1.8 GHz, quality-factor of maximum 8.2 at 2.5 GHz, SRF of 5.8 GHz. Otherwise, 1-layer spiral planar inductors have inductance of 1.5nH over the frequency range of 0.8 to 1.8 GHz, quality-factor of maximum 18 at 8 GHz, SRF of 19.2 GHz.

Design of a Dual Band High PAE Power Amplifier using Single FET and Class-F (Single FET와 Class-F급을 이용한 이중대역 고효율 전력증폭기 설계)

  • Kim, Seon-Sook;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.1
    • /
    • pp.110-114
    • /
    • 2008
  • In this paper, high efficient class F power amplifier with dual band has been realized. Dual band power amplifier have used modify stub matching for single FET, center frequency 2.14GHz and 5.2GHz respectively. Dual band amplifier is 32.65dBm output power, gain 11dB and PAE 36% at the 2.14GHz, 7dB gain at the 5.2GHz. Design of a dual band class F power amplifier using harmonic control circuit. The measured are 9.9dB gain, 30dBm output power and PAE 55% at the 2.14GHz, 11.7dB gain at the 5.2GHz. This paper is being used the load-pull method and it maximizes output power and it is using the only one transistor in the paper. As a result, this research will obtain a dual band high PAE power amplifier.

A study on Design for Phase Shifter for Microwave Circuits (마이크로파 회로용 Phase Shifter의 설계에 관한 연구)

  • ;;;;;Hiroyuki Arai
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.152-155
    • /
    • 2000
  • This paper presents the characteristics of phase shifter which is operating at 2 GHz band and 12 GHz band. Two types of substrate stick with different dielectric constants are considered in these bands. Dielectric constants of microstrip feed crank line is 2.6. In the case of a small substrate stick with dielectric constant of 9 in the calculation, S21 phase is linearly varied at 1.98 GHz and 2.45 GHz, and variation of the shifting angle is about 20。. The angle of S21 phase shifting at 12 GHz band if calculated about 30。

  • PDF

Design of 2.3 GHz BPF Using Microstrip Line Structure (테프론을 이용한 2.3 GHz 협대역 대역통과필터)

  • ;Mai Linh
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.148-150
    • /
    • 2002
  • In this paper, a 5-coupled BPF with teflon substrate is presented. In general, for less than 1 GHz frequency, the narrow bandwidth as well as the good characteristic in the rejection frequency band could be realized using lumped elements. However, for higher than 1 GHz frequency, the distributed elements such as microstrip lines need to be used for the design of the desired BPF For less than 2 GHz, the FR4 shows good filter characteristic at low cost. However, in the range of 2 GHz ~ 10 GHz, the filters with FR4 show a big difference between simulation and measurement results. Thus, in such a high frequency region, the teflon is more preferred to the FR4. The center frequency (fc) of the proposed filter is 2.3 GHz, the insertin loss (IL) is 1.2 dB, the return loss (RL) is 30 dB, bandwidth (BW) is 100 MHz, and the size is 8.3 cm $\times$ 4.9 cm.

  • PDF

Design of Active Antenna Diplexers Using UWB Planar Monopole Antennas (초광대역 평면형 모노폴 안테나를 이용한 능동 안테나 다이플렉서의 설계)

  • Kim, Joon-Il;Lee, Won-Taek;Chang, Jin-Woo;Jee, Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.9
    • /
    • pp.1098-1106
    • /
    • 2007
  • This paper presents active antenna diplexers implemented into an ultra-wideband CPW(Coplanar Waveguide) fed monopole antennas. The proposed active antenna diplexer is designed to direct interconnect the output port of a wideband antenna to the input port of two active(HEMT) devices, where the impedance matching conditions of the proposed active integrated antenna are optimized by adjusting CPW(Coplanar Waveguide) feed line to be the length of 1/20 $\lambda_0$(@5.8 GHz) in planar type wideband antenna. The measured bandwidth of the active integrated antenna shows the range from 2.0 GHz to 3.1 GHz and from 5.25 GHz to 5.9 GHz. The measured peak gains are 17.0 dB at 2.4 GHz and 15.0 dB at 5.5 GHz.

UWB Antenna with Band Stop Characteristic in UNII Band (UNII 밴드에서 대역 저지 특성을 갖는 초광대역 안테나)

  • Roh Yang-Woon;Chung Kyung-Ho;Choi Jae-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.2 s.93
    • /
    • pp.194-198
    • /
    • 2005
  • A novel ultra wideband microstrip-fed circular patch antenna having band stop characteristic in UNII band is presented. The band stop characteristic is realized by inverted-U shaped slot. The range of stop bandwidth can be adjusted by changing the length of the slot. The measured impedance bandwidth of the proposed antenna is from 2.9 GHz to 12.1 GHz with the stop band from 4.9 GHz to 6 GHz for VSWR<2. This antenna shows a monopole-like radiation pattern and flat gain characteristic throughout the operating frequency band.

Design of Rectangular Planar Monopole Antenna with a Double Sleeve (이중 슬리브를 갖는 직사각형 평면 모노폴 안테나 설계)

  • Kang, Sang-Won;Chang, Tae-Soon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.215-220
    • /
    • 2016
  • In this paper, a wideband antenna accomplished by adding a double sleeve of a rectangular planar monopole structure is proposed. In order to impedance matching of proposed antenna, the antenna performance was improved by adding two gap sleeves and outer sleeve for double sleeve structure. HFSS simulator of ANSYS corp. was used in order to confirm the antenna parameter characteristic. According to the simulation results, the VSWR was less than 2 for the range of 2.5GHz~10.5GHz. The frequency bandwidth is 8GHz. The frequency range of the actual fabricated antenna was 2.92GHz~10.32GHz, the frequency bandwidth is 7.4GHz. The measured radiation pattern frequency is 3GHz, 6GHz and 9GHz. The results are similar with dipole antenna pattern in all frequency. The antenna size is $40{\times}40mm^2$. The utilization possibility of the ultra-wideband planar monopole antenna could be confirmed according to compare and analyze the simulation and measurement data.

Low Phase Shift Attenuator Using the Half-Moon Radial Stub (반달 모양의 방사형 동조 스터브를 이용한 저위상 변화 감쇠기의 설계)

  • 윤종만;양기덕;김민택;박익모;신철재
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.5
    • /
    • pp.452-461
    • /
    • 1997
  • In this paper, we present a computer-aided design(CAD) technique for minimizing the phase shift in microstrip PIN diode attenuators due to the junction capacitance in the equivalent circuit model of PIN diode. Microstrip PIN diode attenuators use the characteristics which the reactance of microstrip line changes from inductive to capacitive as the frequency sweeps across the band. Microstrip PIN diode attenuator designed utilizes the quarter-wavelength transmission line terminating with the half-moon radial stub, which is designed for negligible phase shifting effect over the intersted bandwidth. The attenuator has similar phase shift at 0 dB and 10 dB of attenuation within average $1.27^{\circ}$ between 1.2GHz and 1.9GHz. The input and output return losses between 1.4 GHz and 1.9 GHz are less than 10 dB over the attenuation range of 0 dB and 10 dB.

  • PDF