• Title/Summary/Keyword: 1.8GHz Band

Search Result 605, Processing Time 0.027 seconds

Design of K-Band Frequency Divider Using 130 nm CMOS Process (130 nm CMOS 공정을 이용한 K-Band 주파수 분배기 설계)

  • Nam, Sang-Kyu;Park, Deuk-Hee;Kim, Seong-Kyun;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.10
    • /
    • pp.1107-1113
    • /
    • 2009
  • In this paper, the design and implementation of K-Band frequency dividers using 130 nm CMOS process are presented. A Miller frequency divider is presented, which realizes a division range from 20 to 25 GHz with 7.2 mW power consumption from 1.2 V supply. The layout size of the core circuit is about $315{\times}246\;um^2$. In addition, a CML frequency divider which divides the output signal of the Miller frequency divider is also presented, which realizes a division range from 8.5 to 13 GHz with 5.7 mW power consumption. The layout size of the CML core is about $91{\times}98\;um^2$. Cascading the Miller and CML frequency dividers, we confirmed the divide-by-4 operation for the input signal from 20 to 25 GHz.

Wibro / WiFi dual-band antenna design for wireless broadband communication (무선 광대역 통신을 위한 Wibro/WiFi 이중대역 안테나 설계)

  • Kim, Gyeong-Rok;Kang, Sung-Woon;Hong, Yong-Pyo;Kim, Kab-Ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.449-452
    • /
    • 2018
  • In this paper, we design a Wibro / WiFi dual band microstrip antenna for wireless broadband communication. The proposed antenna is designed to have the characteristics of FR-4 (er = 4.3), size of $40[mm]{\times}40[mm]$, and usable in 2.31[GHz] and 5.8[GHz] bands of Wibro / WiFi. The simulation is performed by CST Microwave Studio 2014 The simulation result shows that the gain is 2.308[dB] at 2.31[GHz] and 2.985[dB] at 5.8[GHz]. S-parameters were also found to be less than -10[dB] (WSWR2: 1) in the desired frequency band, and a small number of parameters and a compact antenna were designed. It is expected that many users will use the mobile communication antenna for accurate and fast communication for smooth wireless broadband communication.

  • PDF

A Ku-band 3 Watt PHEMT MMIC Power Amplifier for satellite communication applications (위성 통신 응용을 위한 Ku-대역 3 Watt PHEMT MMIC 전력 증폭기)

  • Uhm, Won-Young;Lim, Byeong-Ok;Kim, Sung-Chan
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1093-1097
    • /
    • 2020
  • This work describes the design and characterization of a Ku-band monolithic microwave integrated circuit (MMIC) power amplifier (PA) for satellite communication applications. The device technology used relies on 0.25 ㎛ gate length gallium arsenide (GaAs) pseudomorphic high electron mobility transistor (PHEMT) of wireless information networking (WIN) semiconductor foundry. The developed Ku-band PHEMT MMIC power amplifier has a small-signal gain of 22.2~23.1 dB and saturated output power of 34.8~35.4 dBm over the entire band of 13.75 to 14.5 GHz. Maximum saturated output power is a 35.4 dBm (3.47 W) at 13.75 GHz. Its power added efficiency (PAE) is 30.6~37.83% and the chip dimensions are 4.4 mm×1.9 mm. The developed 3 W PHEMT MMIC power amplifier is expected to be applied in a variety of Ku-band satellite communication applications.

Design of Double Dipole Quasi-Yagi Antenna with enhanced bandwidth and gain (대역폭과 이득이 향상된 이중 다이폴 준-야기 안테나 설계)

  • Yeo, Junho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.2
    • /
    • pp.252-258
    • /
    • 2017
  • In this paper, the bandwidth and gain enhancement of a double-dipole quasi-Yagi antenna (DDQYA) using a modified balun and two directors is studied. The proposed DDQYA consists of two strip dipoles with different lengths, a ground reflector, which are connected through a coplanar strip line, and two directors. The modified balun is used to increase the bandwidth, whereas two directors are appended to the DDQYA to enhance the gain in the middle and high frequency band. The effects of the length and width of the first director on the antenna performance are analyzed, and final design parameters to obtain a gain over 7 dBi at 1.60-2.90 GHz band are obtained. A prototype of the proposed DDQYA is fabricated on an FR4 substrate, and the experimental results show that the antenna has a frequency band of 1.57-3.00 GHz for a VSWR < 2, and measured gain ranges 7.1-7.8 dBi at 1.60-2.90 GHz band.

Dual-Band Frequency Reconfigurable Small Eighth-Mode Substrate-Integrated Waveguide Antenna (이중 대역 주파수 가변 1/8차 소형 기판집적형 도파관 안테나)

  • Kang, Hyunseong;Lim, Sungjoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.1
    • /
    • pp.10-18
    • /
    • 2014
  • In this paper, we propose a new frequency reconfigurable dual-band antenna. By using an electronically compact eighth-mode substrate-integrated-waveguide(EMSIW) resonator, we have designed a compact antenna, which performs dual-band movement by additionally loading a complementary split ring resonator(CSRR) structure. The EMSIW and CSRR structures are designed to satisfy the bandwidths of 1.575 GHz(GPS) and 2.4 GHz(WLAN), respectively. We load the CSRR with a varactor diode to allow a narrow bandwidth and to enable the resonance frequency to continuously vary from 2.4 GHz to 2.5 GHz. Thus, we realize a channel selection function that is used in the WLAN standards. Irrespective of how a varactor diode moves, the EMSIW independently resonates so that the antenna maintains a fixed frequency of the GPS bandwidth even at different voltages. Consequently, as the DC bias voltage changes from 11.4 V to 30 V, the resonance frequency of the WLAN bandwidth continuously changes between 2.38 GHz and 2.5 GHz, when the DC bias voltage changes from 11.4 V to 30 V. We observe that the simulated and the measured S-parameter values and radiation patterns are in good agreement with each other.

A Study on the 8W High Power Amplifier for VSAT at Ku-band (Ku-band의 소형 지구국용을 위한 8W 고출력 증폭기에 관한 연구)

  • 조창환;이찬주;홍의석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.7 no.1
    • /
    • pp.53-60
    • /
    • 1996
  • The 8W hybrid MIC SSPA has been developed in the frequency range from 14.0 GHz to 14.5 GHz for uplink of KOREASAT's earth station. The whole system was designed of two parts with driving amplifier and high power amplifier to simplify the fabrication process. we reduced weight and volum of power amplifier through arranging the bias circuits in the same housing. The realized SSPA has a small signal gain of $26\pm1dB$within 500 MHz bandwidith, and the input and output return losses are over 7dB and 12dB respectively. The output power of 39.0 ~ 39.2dBm is achieved at the 1dB gain compression point of 14 GHz, 14.25 GHz, and 14.5 GHz. That reveals higher power than 8W of design target. The proposed SSPA manufacture techni- ques in this paper can be applied to the implementation of power amplifiers for some radars and SCPC.

  • PDF

Design of the Wideband Microwave Absorber for X-band Applications (X-대역 응용을 위한 광대역 전파 흡수체 설계)

  • Hong, Young-Taek;Jeoung, Gu-Ho;Choi, Jaehoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.9
    • /
    • pp.749-755
    • /
    • 2017
  • In this paper, a wideband microwave absorber for X-band(8~12 GHz) applications is proposed. The structure of the proposed absorber unit cell consists of a resonator with a slot and slit, a backing ground plate, and a Taconic RF-30(${\varepsilon}_r=3$, $tan{\delta}=0.0014$) substrate with a dimension of $8.5{\times}8.5{\times}0.5mm^3$. The proposed absorber has a dual resonance at 9.83 and 10.37 GHz. To demonstrate the operating principle of the proposed absorber structure at each resonance frequency, the simulated current distributions on the unit cell are analyzed. To verify the performance of the proposed absorber, a prototype absorber was fabricated with a planar array of $20{\times}20$ unit cells. The measured results exhibit two absorptivity peaks stronger than 99 % and full-width at half-maximum(FWHM) bandwidth of 1.1 GHz(9.51~10.61 GHz).

Performance Improvement and Application Plan of the Radio Telescope of Gwacheon National Science Museum (국립과천과학관 전파망원경 성능개선 및 활용방안)

  • Cho, Jaeil;Kim, Jung-Hoon;Han, Myunghee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.40.1-40.1
    • /
    • 2021
  • Gwacheon National Science Museum(GNSM) has a 7.2m radio telescope, which is only one possessed by a science museum in Korea. In 2020, performance of the telescope had been improved in the way of a new antenna control system, receiver system, control and analysis software. New AC motors, limiters and encoders was installed and the new receive system can observe L-band(1.4GHz) and S-band(2.8GHz), L-band and Ka-band(33GHz) equipped previously. Using theses upgraded system we have developed educational programs, which are 'The Sun seen in radio' and 'The Universe seen in radio'. In the former, the sun is observed with several methods and show analysed data to participants. In the latter, various radio sources, the moon, supernova remnants and HI gas, and even signal from artificial satellites are observed. In addition, SETI demo data can be shown and demonstrates how to find artificial signal extraterrestrial intelligence could send.

  • PDF

Dual-Band Power Divider Using CRLH-TL (CRLH 전송 선로 구조를 이용한 이중 대역 전력 분배기)

  • Kim, Seung-Hwan;Sohn, Kang-Ho;Kim, Ell-Kou;Kim, Young;Lee, Young-Soon;Yoon, Young-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.8
    • /
    • pp.837-843
    • /
    • 2008
  • This paper proposes a power divider based on meta-material structure with dual-band operation. The meta-material structures of left-hand characteristic are constituted of series capacitors and shunt inductors, but they have parasitic series inductance and shunt capacitance effects. There is represented the composite right/ left-handed transmission line (CRLH-TL) model. When the power divider is implemented by using the CRLH-TL, the power divider can operate dual band. To verify the power divider with dual band, we are implemented to operate dual-band that is 0.88 GHz and 1.67 GHz. The characteristics of divider have the return loss less than each 21.0 dB and 15.8 dB and the insertion loss better than 3.83 dB and 3.64 dB at each frequency. Also, the output phase difference is $3{\sim}6^{\circ}$.

A Novel Varactor Diodeless Push-Push VCO with Wide Tuning Range (바렉터 다이오드를 이용하지 않은 광대역 Push-Push 전압제어 발진기)

  • Lee Moon-Que;Moon Seong-Mo;Min Sangbo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.4 s.95
    • /
    • pp.345-350
    • /
    • 2005
  • An X-band push-push VCO for low cost applications is proposed. The designed push-push oscillator achieves a wide tuning range in the X-band by the collector bias tuning instead of extra varactor diodes. The measurement shows a wide tuning bandwidth of $900\;\cal{MHz}\;from\;10.9\;\cal{GHz}\;to\;11.8\;\cal{GHz}$ with a drain bias voltage varying from 4 to 9 V, excellent fudamental suppression of $-30\;\cal{dBc}$ and good phase noise of $-115\;\cal{dBc/Hz}\;@\;1\;\cal{MHz}$ offset.