• Title/Summary/Keyword: 1.8GHz Band

Search Result 604, Processing Time 0.032 seconds

Design and Implementation of UWB BPFs (UWB BPF의 설계 및 구현)

  • Kang, Sang-Gee;Lee, Jae-Myung;Hong, Sung-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.5
    • /
    • pp.815-820
    • /
    • 2008
  • Recently the frequency assignment and the technical specifications of UWB systems for communications are completed. Therefore many UWB systems have been developed. In our country $3.1{\sim}4.8GHz$ and $7.2{\sim}10.2GHz$ are assigned for UWB systems for communications. When we consider RF technologies and the easy implementation of UWB systems, UWB systems used in the low band are more developed than high band systems. In this paper we design and implement a BPF for low band UWB systems by means of considering the easy implementation of UWB systems. The designed and implemented BPFs are low band filter and low band channel filters. The measured results of the low band filter show that the filter has 21.85dB and 17.91dB attenuation at 3.1GHz and 4.8GHz, 1.53GHz of -10dB bandwidth and 2dB of insertion loss. Low band can be divided into 3 channels with 500MHz of the channel bandwidth. The channel filter for channel number 1 has the characteristics of 24.85dB attenuation at 3.1GHz, 0.61GHz of -10dB bandwidth and 1.87dB of insertion loss. The filter for channel 3 in low band has 19.2dB of attenuation at 4.8GHz, 0.49GHz of -10dB bandwidth and 2.49dB of insertion loss.

Quad-Band RF CMOS Power Amplifier for Wireless Communications (무선 통신을 위한 Quad-band RF CMOS 전력증폭기)

  • Lee, Milim;Yang, Junhyuk;Park, Changkun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.7
    • /
    • pp.807-815
    • /
    • 2019
  • In this paper, we design a power amplifier to support quad-band in wireless communication devices using RF CMOS 180-nm process. The proposed power amplifier consists of low-band 0.9, 1.8, and 2.4 GHz and high-band 5 GHz. We proposed a structure that can support each input matching network without using a switch. For maximum linear output power, the output matching network was designed for impedance conversion to the power matching point. The fabricated quad-band power amplifier was verified using modulation signals. The long-term evolution(LTE) 10 MHz modulated signal was used for 0.9 and 1.8 GHz, and the measured output power is 23.55 and 24.23 dBm, respectively. The LTE 20 MHz modulated signal was used for 1.8 GHz, and the measured output power is 22.24 dBm. The wireless local area network(WLAN) 802.11n modulated signal was used for 2.4 GHz and 5.0 GHz. We obtain maximum linear output power of 20.58 dBm at 2.4 GHz and 17.7 dBm at 5.0 GHz.

T-shaped Microstrip Monopole Antenna with a Pair of Slits for Dual-Band Operation (슬릿쌍을 이용한 이중 대역 T-형 마이크로스트립 모노폴 안테나)

  • Lee, Jong-Ig;Yeo, Jun-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12C
    • /
    • pp.759-763
    • /
    • 2011
  • In this paper, a dual-band T-shaped microstrip monopole antenna with a pair of slits for 2.4/5.2/5.8-GHz wireless local area networks (WLANs) is proposed. A pair of T-shaped slits is loaded on a T-shaped monopole antenna fed by microstrip line in order to obtain dual-band operation as well as to reduce the antenna size. It is demonstrated from experimental results that the proposed antenna can cover all the required bands for WLAN. The measured impedance bandwidth for VSWR<2 is about 5.7% (2.37-2.51GHz) in the lower frequency band and about 28.8% (4.76-6.35GHz) in the higher frequency band. The measured peak gains are about 1.33 dBi to 1.66 dBi in the 2.4GHz band, 3.50 dBi to 3.95 dBi in the 5.25GHz band, and 2.06 dBi to 2.34 dBi in the 5.8GHz band.

Quadruple Band-Notched Trapezoid UWB Antenna with Reduced Gains in Notch Bands

  • Jin, Yunnan;Tak, Jinpil;Choi, Jaehoon
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.1
    • /
    • pp.35-43
    • /
    • 2016
  • A compact ultra-wide band antenna with a quadruple band-notched characteristic is proposed. The proposed antenna consists of a slotted trapezoid patch radiator, an inverted U-shaped band stop filter, a pair of C-shaped band stop filters, and a rectangular ground plane. To realize the quadruple notch-band characteristic, a U-shaped slot, a complementary split ring resonator, an inverted U-shaped band stop filter, and two C-shaped band stop filters are utilized in this antenna. The antenna satisfies the -10 dB reflection coefficient bandwidth requirement in the frequency band of 2.88-12.67 GHz, with a band-rejection characteristic in the WiMAX (3.43-3.85 GHz), WLAN (5.26-6.01 GHz), X-band satellite communication (7.05-7.68 GHz), and ITU 8 GHz (8.08-8.87 GHz) signal bands. In addition, the proposed antenna has a compact volume of $30mm{\times}33.5mm{\times}0.8mm$ while maintaining omnidirectional patterns in the H-plane. The experimental and simulated results of the proposed antenna are shown to be in good agreement.

Fully Embedded 2.4GHz Compact Band Pass Filter into Multi-Layered Organic Packaging Substrate

  • Lee, Seung-J.;Lee, Duk-H.;Park, Jae-Y.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.1
    • /
    • pp.39-44
    • /
    • 2008
  • In this paper, fully embedded 2.4GHz WLAN band pass filter (BPF) was investigated into a multi-layered organic packaging substrate using high Q spiral stacked inductors and high Dk MIM capacitors for low cost RF System on Package (SOP) applications. The proposed 2.4GHz WLAN BPF was designed by modifying chebyshev second order filter circuit topology. It was comprised of two parallel LC resonators for obtaining two transmission zeros. It was designed by using 2D circuit and 3D EM simulators for finding out optimal geometries and verifying their applicability. It exhibited an insertion loss of max -1.7dB and return loss of min -l7dB. The two transmission zeros were observed at 1.85 and 6.7GHz, respectively. In the low frequency band of $1.8GHz{\sim}1.9GHz$, the stop band suppression of min -23dB was achieved. In the high frequency band of $4.1GHz{\sim}5.4GHz$, the stop band suppression of min -l8dB was obtained. It was the first embedded and the smallest one of the filters formed into the organic packaging substrate. It has a size of $2.2{\times}1.8{\times}0.77mm^3$.

  • PDF

Structural Modification of Crossed Planar Monopole Antenna for ISM 2.45GHz/5.8GHz Dual Band Characteristics (ISM 2.45GHz/5.8GHz 이중대역 특성을 위한 십자형 평판 모노폴 안테나의 구조 변경)

  • Shim, Jaeruen;Chun, Joong-Chang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.1
    • /
    • pp.13-18
    • /
    • 2015
  • This study presents the structure design of antenna to have the dual band characteristics in a desired frequency band through the structural modification of an antenna structure. For the experiment, a wideband crossed planar monopole antenna was used. The target frequency band was set to ISM 2.45GHz/5.8GHz. To give the properties, an additional antenna element was added to the crossed planar monopole antenna, which is a main body of the antenna. And then structural adjustment parameter was set to change the length(shape) of the antenna. Various simulations were conducted to find the dual band characteristics in the desired frequency band. The simulations brought forth the antenna bandwidth above the normal values for ISM 2.45GHz/5.8GHz. The structural adjustment parameter introduced in this study for structural modification of an antenna can be useful in developing an antenna featured with dual band(multiband) characteristics.

A Novel Monopole Antenna for ISM 2.45GHz/5.8GHz Dual Band Characteristics by a Linear Monopole Antenna Combined with a Crossed Planar Monopole Antenna (선형 모노폴 안테나와 십자형 모노폴 안테나의 결합에 의한 ISM 2.45GHz/5.8GHz 이중대역 특성을 가지는 안테나 설계)

  • Shim, Jae-Ruen
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.6
    • /
    • pp.515-519
    • /
    • 2015
  • In this paper, we suggested the novel monopole antenna for dual band characteristics by a linear monopole antenna combined with crossed planar monopole antenna. The target frequency is ISM(Industrial Scientific Medical) 2.45GHz/5.8GHz. The distinctive features of the proposed antenna in this paper is based on the slit in the surface of a crossed planar monopole for the dual band characteristics and the omnidirectional radiation patterns. The compact size of the proposed antenna is $36mm{\times}5.4mm{\times}5.4mm$. According to the simulation results, the bandwidth, the reflection coefficients below -10dB, of 2.45GHz and 5.8GHz are 150MHz and 1.43GHz, respectively. Consequently the proposed antenna structures is apply to the antenna for dual band characteristics.

A Simple Dual Band Filter Design with 0603 Case Size using IPD Technology for 1.8 GHz and 2.5 GHz DC-block Application

  • Li, De-Zhong;Wang, Cong;Kyung, Gear Inpyo;Kim, Nam-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.385-386
    • /
    • 2008
  • In this paper, a simple dual band filter chip is designed with 0603 case size using IPD technology. The dual-band filter achieves high frequency band at 2.5 GHz and low frequency band at 1.8 GHz. The insertion losses in high frequency band and low frequency band are -0.195 dB and -0.146 dB, respectively. The return losses in these bands are -22.7 dB and -22.8 dB, respectively. The simple dual-band filter based on SI-GaAs substrate is designed within die size of about 1.3 $mm^2$.

  • PDF

UWB Antenna with Triple Band-Notched Characteristics Using the Spiral Resonator and the CSRR (스파이럴 공진기와 CSRR을 이용한 삼중 대역 저지 특성을 갖는 UWB 안테나)

  • Kim, Jang-Yeol;Lee, Seung-Woo;Kim, Nam;Lee, Sang-Min;Oh, Byoung-Cheol
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.11
    • /
    • pp.1078-1091
    • /
    • 2011
  • In this paper, a triple band-notched UWB antennas using a spiral resonator and a complementary split ring resonator is proposed as two types. The band-rejection characteristic of the designed antenna is analyzed through the structure and equivalent circuit model of spiral resonator and CSRR. The measured results of first type antenna show that a VSWR less than 2 was satisfied with a resonant frequency in the range of 1.16~12 GHz and it can be obtained the band-stop performance at 3.3~3.85 GHz, 5.15~6.1 GHz, and 8.025~8.5 GHz. The measured results of second type antenna show that a VSWR less than 2 was satisfied with this antenna works from 1.79 to 12 GHz and it can be achieved the band-notched performance at 3.3~3.88 GHz, 5.12~5.94 GHz, and 8.025~8.51 GHz. Through the measured results, the designed antenna was satisfied UWB band except for triple notched bands.

Dual Band-notched Monopole Antenna for 2.4 GHz WLAN and UWB Applications (이중대역 저지특성을 가지는 2.4 GHz WLAN 및 UWB 겸용 모노폴 안테나)

  • Lee, Ki-yong;Lee, Young-soon
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.2
    • /
    • pp.193-199
    • /
    • 2017
  • In the paper, a dual band-notched monopole antenna is proposed for 2.4 GHz WLAN (2.4 ~ 2.484 GHz) and UWB (3.1 ~ 10.6 GHz) applications. The 3.5 GHz WiMAX band notched characteristic is achived by a pair of L-shaped slots instead of the previous U-shaped slot on the center of the radiating patch, whereas the 7.5 GHz band notched characteristic is achived by C-shaped strip resonator placed near to the microstrip feed line. The measured impedance bandwidth (${\mid}S_{11}{\mid}{\leq}-10dB$) is 8.62 GHz (2.38 ~ 11 GHz) which is sufficient to cover 2.4 GHz WLAN and UWB band, while measured band-notched bandwidths for 3.5 GHz WiMAX and 7.5 GHz bnad are 1.13 GHz (3.15 ~ 4.28 GHz) and 800 MHz (7.2 ~ 8 GHz) respectively. In particular, it has been observed that antenna has a good omnidirectional radiation patterns and higher gain of 2.51 ~ 6.81 dBi over the entire frequency band of interest.