• Title/Summary/Keyword: 1.8GHz 대역

Search Result 520, Processing Time 0.025 seconds

Study on the MIMO Channel Characteristics Considering Urban Canyon at the Microwave Bands (도심 협곡 환경에서의 마이크로파 대역 MIMO 채널 특성에 관한 연구)

  • Lim, Jae-Woo;Kwon, Se-Woong;Moon, Hyun-Wook;Park, Yoon-Hyun;Yoon, Young-Joong;Yook, Jong-Gwan;Jeong, Jin-Soub;Kim, Jong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.10A
    • /
    • pp.1065-1071
    • /
    • 2007
  • In this paper, in order to research spectrum usage efficiency in urban canyon environment at the microwave band, measurement and channel capacity analysis of multi-antenna technology is described. The measurement data obtained from 3 - 4 stories building area used and the propagation characteristics at the 3.7 and 8GHz band are analysed and compared. In case of $2{\times}2$ MIMO, channel capacities of 3.7 and 8 GHz band are calculated to 9.1 bps/Hz and S bps/Hz and in case of $4{\times}4$ MIMO, 21 bps/Hz and 12.5 bps/Hz respectively. Considering the coverage, SNR and channel capacity in urban environment, MIMO propagation characteristics of 3.7 GHz are more predominate than those of 8 GHz.

Design and Implementation of UWB Antenna with Band Rejection Characteristics (대역저지 특성을 갖는 초광대역 안테나 설계 및 구현)

  • Yang, Woon Geun;Nam, Tae Hyeon;Yu, Jae Seong;Oh, Hee Oun
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.1
    • /
    • pp.31-36
    • /
    • 2018
  • In this paper, we designed and implemented an ultra wideband(UWB) antenna with band rejection characteristics. The proposed antenna consists of a planar radiation patch with slots and ground planes on both sides. Due to the slots in the radiation patch, the antenna shows band rejection characteristics. U-type slot contributes for wireless local area network(WLAN, 5.15~5.825 GHz) band rejection and n-type slot contributes for X-Band(7.25~8.395 GHz) band rejection. To make voltage standing wave ratio(VSWR) less than 2.0 for UWB frequency band except rejection bands, the shapes of planar radiation patch and ground plane was modified. The Ansoft 's high frequency structure simulator(HFSS) was used for the design process and simulations of the proposed antenna. The simulated antenna showed VSWR less than 2.0 for all UWB band excepts for dual rejection bands of 5.15 ~ 5.94 GHz and 7.02 ~ 8.45 GHz. And measured VSWR for the implemented antenna is less than 2.0 for all UWB band of 3.10~10.60 GHz excluding dual rejection bands of 5.12~5.95 GHz and 7.20~8.58 GHz.

Design of Dual-Band Power Amplifier for the RFID Frequency-Band (RFID 대역에서 동작하는 이중 대역 전력증폭기 설계)

  • Kim, Jae-Hyun;Hwang, Sun-Gook;Park, Hyo-Dal
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.3
    • /
    • pp.376-379
    • /
    • 2014
  • In this paper, we designed more improving a dual-band power amplifier than the transceiver of RFID reader that operates at 910 MHz and 2.45 GHz. A dual-band power amplifier has two circuits. One matching circuit is composed lumped element in the band of 910 MHz. The other matching circuit using distributed element in the high band of 2.45 GHz. So, this dual-band power amplifier works as Band Rejection Filter in the band of 910 MHz but in the high band of 2.45 GHz works as Band Pass Filter. Therefore, this is composed a microstrip transmission line. A power amplifier is showed gains of 8 dB output power at 910 MHz and 1.5 dB output power at 2.45 GHz. If input power is 10 dBm, both of bands output 20 dBm.

Design of Dual-band Microstrip Antenna for Wireless Communication Applications (무선통신을 위한 이중대역 마이크로스트립 안테나 설계)

  • Kim, Oug-Whoan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.6
    • /
    • pp.1275-1279
    • /
    • 2012
  • In this paper, we design of dual-band microstrip antenna for wireless communication. We used IEEE 802.11a and Hyper LAN (5.725~5.825 GHz). The proposed antenna substrate is FR-4, size is $22mm{\times}23mm$, thickness is 1.6mm and used to CST Microwave Studio 2010 program. As a result the simulation has good result and good return loss below -10 dB at 5 GHz and 5.8 bandwidth.

Design and Fabrication of a Quadruple Band Antenna for WLAN/WiMAX Systems (900 MHz 대역을 포함한 WLAN/WiMAX 시스템에 적용 가능한 4중대역 안테나 설계 및 제작)

  • Park, Sang-wook;Choi, Tea-Il;Choi, Young-kyu;Yoon, Joong-Han
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.10
    • /
    • pp.1240-1247
    • /
    • 2019
  • In this paper, we designed a four-band antenna that can be applied to WLAN and WiMAX systems by designing a microstrip feeding structure, four branch lines and a slit on the ground plane. The proposed antenna is designed with a size of 16.0 mm (W1) × 48.0 mm (L8) on a dielectric substrate of 18.0 mm (W) × 50.0 mm (L) × 1.0 mm(h). and a slit of 2.9 mm (W7) × 4.0 mm (L7) is inserted into the ground plane of 18.0 mm (W) × 18.7 mm (L6). Based on -10 dB production and measurement results, it obtained 60.8 MHz (8,730~9,338 MHz), 310 MHz (2.33~2.64 GHz) in the 2.4 GHz band, 420MHz (3.39~3.81 GHz) in the 3.4 GHz band, and 2,070 MHz (4.62~6.69 GHz) in the 5.0 GHz. In addition, the gain and radiation pattern characteristics of the quadrant band are measured from the measurement results anechoic chamber.

Design and Fabrication of Quadruple Band Antenna with DGS (DGS를 적용한 4중대역 안테나의 설계 및 제작)

  • Kim, Min-Jae;Choi, Tea-Il;Choi, Young-Kyu;Yoon, Joong-Han
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.1
    • /
    • pp.31-38
    • /
    • 2020
  • In this paper, we propose a quadruple band antenna for GPS/WLAN/WiMAX application. The proposed antenna has quadruple band characteristics by considering the interconnection of four strip lines and DGS on the ground place. The total substrate size is 20.0 mm (W1) ⨯27.0 mm (L1), thickness (h) 1.0 mm, and the dielectric constant is 4.4, which is made of 20.0 mm (W2)⨯ 27.0 mm (L8 + L6+ L10) antenna size on the FR-4 substrate. From the fabrication and measurement results, bandwidths of 60 MHz (1.525 to 1.585 GHz) bandwidth for GPS band, 825 MHz (3.31 to 4.135 GHz) bandwidth for WiMAX band and 480 MHz (2.395 to 2.975 GHz) and 385 MHz (5.10 to 5.485 GHz) bandwidth for WLAN band were obtained on the basis of -10 dB. Also, gain and radiation pattern characteristics are measured and shown in the frequency of triple band as required.

An UWB Design of Plane Bow-Tie Monopole Antenna (평면형 보우타이 모노폴 안테나의 초광대역 설계)

  • Kim, Tae-Woo;Choi, Kyoung;Hwang, Hee-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.12
    • /
    • pp.1212-1218
    • /
    • 2014
  • This paper proposes a planar bow-tie UWB antenna by modifying the ground patch of a reference bowtie-monopole antenna satisfying low band of UWB. The proposed antenna was implemented with five-angled ground patch to be operated in whole UWB band, while the reference antenna had a ground patch of half circle type. The measured return loss satisfies less than -10 dB in 3.1~10.6 GHz, except 4.9~5.8 GHz rejection band. The measured radiation pattern is almost the same with that of the monopole antenna. The radiation gain reduction is about 8 dB at rejection band.

Design of UWB Hexagon Patch Antenna with WLAN Notch Band Characteristic (WLAN 노치 대역 특성을 갖는 UWB 육각형 패치 안테나)

  • Kim, Young-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.1
    • /
    • pp.286-290
    • /
    • 2017
  • In this paper, we have proposed a hexagonal patch UWB antenna with a band notch characteristic where the notch band of 5.15 ~ 5.85 GHz band of WLAN was induced by inserting a circular slit in the patch. The impedance bandwidth of the proposed antenna meet the band width criteria of UWB communication system where is mentioned as frequencies range form 3.1 ~ 11.8 GHz. The characteristic band at 5.2 ~ 5.8 GHz notch band was observed. The radiation pattern of the antenna shows a directinal radiation pattern at $0^{\circ}$ and $180^{\circ}$ in XZ-plane and YZ-plane is an omni-directional pattern, respectively. In addition, it is observed that increase in frequency results in increases of the antenna gain whereas the notch band section is decreased. The proposed antenna was designed TRF-45 substrate with thickness of 1.62 mm, a loss tangent of 0.0035, a relative permittivity of 4.5 and designed were used Ansys Inc. HFSS.

Quad-Band RF CMOS Power Amplifier for Wireless Communications (무선 통신을 위한 Quad-band RF CMOS 전력증폭기)

  • Lee, Milim;Yang, Junhyuk;Park, Changkun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.7
    • /
    • pp.807-815
    • /
    • 2019
  • In this paper, we design a power amplifier to support quad-band in wireless communication devices using RF CMOS 180-nm process. The proposed power amplifier consists of low-band 0.9, 1.8, and 2.4 GHz and high-band 5 GHz. We proposed a structure that can support each input matching network without using a switch. For maximum linear output power, the output matching network was designed for impedance conversion to the power matching point. The fabricated quad-band power amplifier was verified using modulation signals. The long-term evolution(LTE) 10 MHz modulated signal was used for 0.9 and 1.8 GHz, and the measured output power is 23.55 and 24.23 dBm, respectively. The LTE 20 MHz modulated signal was used for 1.8 GHz, and the measured output power is 22.24 dBm. The wireless local area network(WLAN) 802.11n modulated signal was used for 2.4 GHz and 5.0 GHz. We obtain maximum linear output power of 20.58 dBm at 2.4 GHz and 17.7 dBm at 5.0 GHz.

Research Dual Band Power Amplifier using PBG Structure (PBG 구조를 이용한 Dual Band 전력증폭기 연구)

  • 전익태;서철헌
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.8
    • /
    • pp.788-793
    • /
    • 2004
  • This paper proposes new configuration for the dual power amplifier that operates at 5.8 GHz for the wireless LAN and 1.8 GHz for the PCS. It dose not select the input signal but amplify the dual band signals simultaneously. Broadband diplexer is used at the input to separate the dual band signals. Output power of each amplifier is 1 W. The PBG is employed to improve the performance of power amplifier. Generally, the PBG is employed at the end of output matching network. But in this paper, the PBG is employed in the load pull output matching circuit of amplifer to maximize the output power.