• Title/Summary/Keyword: 1.8GHz

Search Result 1,338, Processing Time 0.03 seconds

Design and implementation of planar UWB antenna with dual band rejection characteristics

  • Woon Geun Yang;Tae Hyeon Nam
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.109-115
    • /
    • 2023
  • In this paper, we design and implement an Ultra-Wide Band (UWB, 3.1~10.6 GHz) antenna with 5G mobile communication (3.42~3.70 GHz) and Wireless Local Area Network (WLAN, 5.15~5.825 GHz) bands rejection characteristics. The proposed antenna consists of a planar radiation patch with two slots. The upper slot contributes to reject 5G mobile communication band and the lower slot contributes to reject WLAN band. The Voltage Standing Wave Ratio (VSWR) values of the proposed antenna show good performances in whole UWB band except for rejection bands based on VSWR 2.0. The proposed UWB antenna was simulated using High Frequency Struture Simulator (HFSS) by Ansoft. The simulated antenna showed dual rejection bands of 3.31~3.92 GHz and 5.04~5.90 GHz in UWB band, and measured antenna showed dual rejection bands of 3.35~3.97 GHz and 5.06~5.97 GHz. The largest VSWR values measured at each rejection band are 13.60 at 3.64 GHz and 10.25 at 5.52 GHz. The measured maximum gain is 5.31 dBi at 10.00 GHz. The lowest gains for the measured antenna at rejection bands are -8.73 dBi at 3.70 GHz and -4.36 dBi at 5.56 GHz.

Dual-Band Frequency Reconfigurable Small Eighth-Mode Substrate-Integrated Waveguide Antenna (이중 대역 주파수 가변 1/8차 소형 기판집적형 도파관 안테나)

  • Kang, Hyunseong;Lim, Sungjoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.1
    • /
    • pp.10-18
    • /
    • 2014
  • In this paper, we propose a new frequency reconfigurable dual-band antenna. By using an electronically compact eighth-mode substrate-integrated-waveguide(EMSIW) resonator, we have designed a compact antenna, which performs dual-band movement by additionally loading a complementary split ring resonator(CSRR) structure. The EMSIW and CSRR structures are designed to satisfy the bandwidths of 1.575 GHz(GPS) and 2.4 GHz(WLAN), respectively. We load the CSRR with a varactor diode to allow a narrow bandwidth and to enable the resonance frequency to continuously vary from 2.4 GHz to 2.5 GHz. Thus, we realize a channel selection function that is used in the WLAN standards. Irrespective of how a varactor diode moves, the EMSIW independently resonates so that the antenna maintains a fixed frequency of the GPS bandwidth even at different voltages. Consequently, as the DC bias voltage changes from 11.4 V to 30 V, the resonance frequency of the WLAN bandwidth continuously changes between 2.38 GHz and 2.5 GHz, when the DC bias voltage changes from 11.4 V to 30 V. We observe that the simulated and the measured S-parameter values and radiation patterns are in good agreement with each other.

Refarming Plans and Radio Waves Law Improvements for Efficient Use of Spectrum (전파의 효율적 이용을 위한 주파수 재배치 방안 및 전파 법령 개선 방안 - LTE 서비스 제공을 위한 1.8 GHz 대역을 중심으로)

  • Seol, Seong-Ho;Kye, Kyung-Moon;Kweon, Soo-Cheon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.8
    • /
    • pp.888-899
    • /
    • 2012
  • In this paper, we present refarming plans and discuss about Radio Waves Law improvements to promote the efficient use of the 1.8 GHz(3GPP band 3) which is emerging as the best prime band for LTE-FDD service. We think it is important to make use of the entire band for mobile use in accordance with contiguity requirement, especially for LTE such as European countries, which is currently separated between different uses. We present two options with illustrative examples to enable that objective. And we identify several provisions in the Radio Waves Law expected to cause controversy when activates one between two options as the policy, and discuss improvements of those.

A study on Folded Monopole Antenna for Wireless HDMI Dongle Applications (무선 HDMI 동글장치를 위한 폴디드 모노폴 안테나에 관한 연구)

  • Lee, Yun-Min;Lee, Jae-Choon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.211-215
    • /
    • 2015
  • In this paper, we propose a internal antenna for wirless HDMI dongle device using the folded monopole structure. The proposed antenna is for 2.4GHz and 5.8GHz. The antenna optimized for parameters length, gap, width, and radius of semicircular of monopole antenna using the 'F' structure. To confirm the characteristics of the antenna parameters, HFSS from ANSYS Inc. was used for the analysis. We used an FR4 dielectric substrate with a dielectric constant of 4.4. The HDMI dongle size of the proposed antenna is $45{\times}20{\times}1mm$, and the size of the antenna area is $5{\times}20mm$. There is a value of return loss less then -10dB in 2.4GHz and 5.8GHz, band and the maximum antenna gain is -4.13dBi. The result proved the possibility of the practical using 'F' structure that came frin comparing and analyzing the measured and simulated data of the antenna.

Wibro / WiFi dual-band antenna design for wireless broadband communication (무선 광대역 통신을 위한 Wibro/WiFi 이중대역 안테나 설계)

  • Kim, Gyeong-Rok;Kang, Sung-Woon;Hong, Yong-Pyo;Kim, Kab-Ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.449-452
    • /
    • 2018
  • In this paper, we design a Wibro / WiFi dual band microstrip antenna for wireless broadband communication. The proposed antenna is designed to have the characteristics of FR-4 (er = 4.3), size of $40[mm]{\times}40[mm]$, and usable in 2.31[GHz] and 5.8[GHz] bands of Wibro / WiFi. The simulation is performed by CST Microwave Studio 2014 The simulation result shows that the gain is 2.308[dB] at 2.31[GHz] and 2.985[dB] at 5.8[GHz]. S-parameters were also found to be less than -10[dB] (WSWR2: 1) in the desired frequency band, and a small number of parameters and a compact antenna were designed. It is expected that many users will use the mobile communication antenna for accurate and fast communication for smooth wireless broadband communication.

  • PDF

Analysis of Throughput Field Test Data Acquired Using Vehicle Mounted Multi-Band MIMO Antenna (다중대역 MIMO 안테나의 차량탑재 필드테스트 결과 분석)

  • Kim, Seung-Ho;Chung, Jae-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.10
    • /
    • pp.745-751
    • /
    • 2018
  • This paper reports on the design of a multiband multiple-input and multiple-output(MIMO) antenna for long-term evolution(LTE) vehicular communication and includes an analysis of the throughput field test results that were acquired by mounting the antenna to a vehicle. The antenna used for the field test was designed as a planar structure and included multiple stubs to obtain multiband resonant characteristics operating in the LTE(0.8~0.9 GHz, 1.7~2.2 GHz), Wi-Fi(2.4~2.48 GHz), and wireless access in vehicular environments (WAVE)(5.8~5.9 GHz) frequency bands. For the field test, antenna prototypes were mounted on the dashboard and roof of a vehicle and connected to the experimental LTE modem. The data transfer rate(throughput), signal-to-interference-plus-noise ratio(SINR), and reference signal received quality(RSRQ) were measured and analyzed in various real-world radio wave environments. Based on these results, the relationship between the SINR and throughput according to the field intensity is confirmed.

UWB impulse generator using gated ring oscillator (게이티드 링 발진기를 이용한 UWB 임펄스 생성기)

  • Jang, Junyoung;Kim, Taewook
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.721-727
    • /
    • 2021
  • This paper proposes a UWB (Ultar-wideband) impulse generator using the gated ring oscillator. The oscillator and PLL circuits which generate a several GHz LO signal for the conventional architecture are replaced with the gated ring oscillator. Therefore, the system complexity is decreased. The proposed architecture controls the duty of enable signal, which is used for the head switch of ring oscillator. The control of the duty enables to tun off the oscillator during the guard interval and stop wasting the power consumption. The pulse shaping method using the counter makes the small side lobe and preserves the bandwidth regardless of the change on the center frequency. Designed UWB impulse generator could change the center frequency from 6.0 GHz to 8.8 GHz with a digital bit control, while it preserves the bandwidth as about 1.5 GHz.

Design of Series-fed Dipole Pair Antenna Using Multiple Directors (다중 도파기를 사용한 직렬 급전 다이폴 쌍 안테나 설계)

  • Yeo, Junho;Park, Jin-Taek;Lee, Jong-Ig
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.471-472
    • /
    • 2015
  • In this paper, a design method for enhancing the gain of a series-fed dipole pair (SDP) antenna using mutiple directors is studied. Strip-type directors are located above the second dipole of the SDP antenna, and the variations of the input VSWR bandwidth and gain depending on the length of the second dipole and the number of directors are analyzed. The antenna is optimized to obtain gain > 8 dBi in the frequency range of 1.7-2.7 GHz, which has three directors in the optimum design. The optimized antenna is designed on an FR4 substrate with a dimension of 86.2 mm by 152.3 mm, and it has frequency bands of 1.67-2.79 GHz for a VSWR < 2 and 1.69-2.72 GHz for a gain > 8 dBi.

  • PDF

Research Dual Band Power Amplifier using PBG Structure (PBG 구조를 이용한 Dual Band 전력증폭기 연구)

  • 전익태;서철헌
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.8
    • /
    • pp.788-793
    • /
    • 2004
  • This paper proposes new configuration for the dual power amplifier that operates at 5.8 GHz for the wireless LAN and 1.8 GHz for the PCS. It dose not select the input signal but amplify the dual band signals simultaneously. Broadband diplexer is used at the input to separate the dual band signals. Output power of each amplifier is 1 W. The PBG is employed to improve the performance of power amplifier. Generally, the PBG is employed at the end of output matching network. But in this paper, the PBG is employed in the load pull output matching circuit of amplifer to maximize the output power.

Design of a $3.1{\sim}10.6GHz$ CMOS Power Amplifier for UWB Application (UWB 응용을 위한 $3.1{\sim}10.6GHz$ CMOS 전력증폭기 설계)

  • Park, J.K.;Shim, S.M.;Park, J.T.;Yu, C.G.
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.193-194
    • /
    • 2007
  • This paper presents the design of a power amplifier for full-band UWB application systems using a CMOS 0..18um technology. A wideband RLC filter and a multilevel RLC matching scheme are utilized to achieve the wideband input/output matching. Both the cascade and cascode stage are used to increase the gain and to achieve gain flatness. Simulation results show that the designed amplifier provides a power gain greater than 10 dB throughout the UWB full-band(3.1-10.6GHz) and an input P1dB of -1.2dBm at 6.9GHz. It consumes 35.8mW from a 1.8V supply.

  • PDF