DOI QR코드

DOI QR Code

Analysis of Throughput Field Test Data Acquired Using Vehicle Mounted Multi-Band MIMO Antenna

다중대역 MIMO 안테나의 차량탑재 필드테스트 결과 분석

  • Kim, Seung-Ho (Department of Electrical and Information Engineering, Seoul National University of Science & Technology) ;
  • Chung, Jae-Young (Department of Electrical and Information Engineering, Seoul National University of Science & Technology)
  • 김승호 (서울과학기술대학교 전기정보공학과) ;
  • 정재영 (서울과학기술대학교 전기정보공학과)
  • Received : 2018.08.17
  • Accepted : 2018.09.19
  • Published : 2018.10.31

Abstract

This paper reports on the design of a multiband multiple-input and multiple-output(MIMO) antenna for long-term evolution(LTE) vehicular communication and includes an analysis of the throughput field test results that were acquired by mounting the antenna to a vehicle. The antenna used for the field test was designed as a planar structure and included multiple stubs to obtain multiband resonant characteristics operating in the LTE(0.8~0.9 GHz, 1.7~2.2 GHz), Wi-Fi(2.4~2.48 GHz), and wireless access in vehicular environments (WAVE)(5.8~5.9 GHz) frequency bands. For the field test, antenna prototypes were mounted on the dashboard and roof of a vehicle and connected to the experimental LTE modem. The data transfer rate(throughput), signal-to-interference-plus-noise ratio(SINR), and reference signal received quality(RSRQ) were measured and analyzed in various real-world radio wave environments. Based on these results, the relationship between the SINR and throughput according to the field intensity is confirmed.

본 논문에서는 차량 LTE 통신용 다중대역 MIMO 안테나를 설계하고, 이를 차량에 부착하여 수행한 데이터 전송률 필드테스트 측정 결과에 대한 분석을 다루고 있다. 필드테스트에 이용된 안테나는 다중대역 공진 특성 확보를 위해 다수의 스터브를 포함한 평판 구조로 LTE(0.8~0.9 GHz, 1.7~2.2 GHz), WiFi(2.4~2.48 GHz) 및 WAVE(5.8~5.9 GHz) 주파수 대역에서 동작하도록 설계하였다. 안테나 시작품을 차량의 대시보드 및 루프에 설치하고, 실험용 LTE 모뎀에 연결하여 다양한 실전파 환경에서의 데이터 전송률(throughput), 신호 대 잡음 간섭비(SINR), 참조 신호 수신 품질(RSRQ) 등을 측정하고 분석하였다. 이를 바탕으로 전계 강도에 따른 SINR과 데이터 전송률 사이의 관계를 확인하였다.

Keywords

References

  1. M. A. Jensen, J. W. Wallace, "A review of antennas and propagation for MIMO wireless communication," IEEE Transactions on Antennas and Propagation, vol. 52, no. 11, pp. 2810-2824, Nov. 2004. https://doi.org/10.1109/TAP.2004.835272
  2. Y. Yang, Q. Chu, and C. Mao, "Multiband MIMO antenna for GSM, DCS, and LTE indoor applications," IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 1573-1576, Jun. 2016. https://doi.org/10.1109/LAWP.2016.2517188
  3. B. Mun, C. Jung, M. J. Park, and B. Lee, "A compact frequency-reconfigurable multiband LTE MIMO antenna for laptop applications," IEEE Antennas and Wireless Propagation Letters, vol. 13, pp. 1389-1392, Jul. 2014. https://doi.org/10.1109/LAWP.2014.2339802
  4. S. Shoaib, I. Shoaib, N. Shoaib, X. Chen, and C. G. Parini, "Design and performance study of a dual-element multiband printed monopole antenna array for MIMO terminals," IEEE Antennas and Wireless Propagation Letters, vol. 13, pp. 329-332, Feb. 2014. https://doi.org/10.1109/LAWP.2014.2305798
  5. L. Ekiz, A. Thiel, O. Klemp, and C. F. Mecklenbrauke, "MIMO performance evaluation of automotive qualified LTE antennas," in 2013 7th European Conference on Antennas and Propagation(EuCAP), Gothenburg, Jun. 2013, pp. 1412-1416.
  6. B. Hagerman, K. Werner, and J. Yang, "MIMO performance at 700 MHz: Field trials of LTE with handheld UE," in 2011 IEEE Vehicular Technology Conference (VTC Fall), San Francisco, CA, Sep. 2011, pp. 1-5.
  7. T. W. Kang, K. L. Wong, "Simple two-strip monopole with a parasitic shorted strip for internal eight-band LTE/ WWAN laptop computer antenna," Microwave and Optical Technology, vol. 53, no. 4, pp. 706-712, Apr. 2011. https://doi.org/10.1002/mop.25836
  8. C. T. Lee, K. L. Wong, "Planar monopole with a coupling feed and an inductive shorting strip for LTE/GSM/ UMTS operation in the mobile phone," IEEE Transaction on Antenna and Propagation, vol. 58, no. 7, pp. 2479-2483, Jul. 2010. https://doi.org/10.1109/TAP.2010.2048878
  9. H. W. Liu, S. Y. Lin, and C. F. Yang, "Compact inverted- F antenna with meander shorting strip for laptop computer WLAN applications," IEEE Antennas and Wireless Propagation Letters, vol. 10, pp. 540-543, May 2011. https://doi.org/10.1109/LAWP.2011.2157887
  10. T. W. Kang, K. L. Wong, L. C. Chou, and M. R. Hsu, "Coupled-fed shorted monopole with a radiating feed structure for eight-band LTE/WWAN operation in the laptop computer," IEEE Transaction on Antenna and Propagation, vol. 59, no. 2, pp. 674-679, Feb. 2011. https://doi.org/10.1109/TAP.2010.2096390
  11. X. L. Sun, L. Liu, S. W. Cheung, and T. I. Yuk, "Dualband antenna with compact radiator for 2.4/5.2/5.8 GHz WLAN applications," IEEE Transaction on Antenna and Propagation, vol. 60, no. 12, pp. 5924-5931, Dec. 2012. https://doi.org/10.1109/TAP.2012.2211322
  12. Z. Liang, H. Jiang, and Y. Long, "Simulation and design of multi-band planar meandered monopole antenna for mobile phone application," in 2012 International Conference on Microwave and Millimeter Wave Technology( ICMMT), Shenzhen, 2012, pp. 1-4.
  13. J. Zik, Maximizing LTE Performance through MIMO Optimization, Germantown, PCTEL Inc., 2011.