• Title/Summary/Keyword: 1-mass model

Search Result 2,104, Processing Time 0.038 seconds

Role of star formation and resulting properties from equal mass disk merger simulations

  • Ji, In-Chan;Peirani, Sebastien;Yi, Suk-Young
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.40.1-40.1
    • /
    • 2012
  • In the hierarchical universe, galaxy merger is predicted to be frequent, and thus it is an important element for understanding galaxy evolution. In particular, star formation is greatly enhanced during the merger. The aim of this study is to understand the position and rate change of star formation caused by equal-mass edge-on mergers. We use the GADGET2- N-body/SPH code, and fully consider gas cooling, star formation, and supernova feedback. We show the star formation rate (SFR), and the magnitude and color evolution of the merger remnants for 18 different configurations varying orbit elements and inclinations of host galaxies against orbit planes. Then we construct the mock images of the remnants and investigate on how equal-mass galaxy merger affects the SFR and color/magnitude evolution while considering dust reddening. We conclude that over 90% mass of SF in equal-mass merger is in the central region. SF in tidal feature involves a small fraction of new stars and thus is difficult to detect unless deep imaging is performed. Around 55 ${\pm}$ 5 percent of gas turns into stars until the final coalescence which typically corresponds to 0.8, 1.2, and 2.5 Gyr for direct, parabolic, and elliptical orbit, respectively. This result is roughly consistent with Cox et al. 2000. We plan to implement this result into semi-analytic model of galaxy formation. Caveats and future work on merging conditions are discussed.

  • PDF

The Sigmoid Kinetics of Mass-action and Photosynthesis based on Influx and Efflux in a Plant Bio-system (유출입의 원리에 의한 물질대사와 광합성능에 관한 동력학적 연구)

  • 장남기
    • The Korean Journal of Ecology
    • /
    • v.1 no.1
    • /
    • pp.3-10
    • /
    • 1977
  • The sigmoiod kinetics of mass-action in a biosystem have been studied by theoretical bases on the carrier hypothesis of influx and efflux of substrates. The sigmoid kinetic equations of assimilation and dissimilation rates indicate that each trophicfactor and each bio-factor behave according to the sigmoid kinetic equation and the bell shape case, and all of them are multiplicative. The general sigmoid kinetics of mass-action is given by the equation (30) which is determined by the total of the equation (28) of the assimilation rate and the equation (29) of the dissimilation rate. The sigmoid kinetic model of photosynthesis has been derived from the general equation of the sigmoid kinetics of mass-action.

  • PDF

Study on Application of Iterative Learning Control to 2-Mass Resonant System (2관성 공진계에 대한 반복 학습 제어의 응용에 관한 연구)

  • 이학성;문승빈;홍성경
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.1
    • /
    • pp.42-46
    • /
    • 2004
  • A 2-mass resonant system is one that has a flexible coupling between a load and a driving motor. Due to this flexibility, the system often suffers vibration especially when the motor is controlled for higher speed command. In order to suppress such a vibration, an iterative learning control is applied to the 2-mass resonant system in this paper. The motor speed is controlled according to the relation with the load speed. The desired speed trajectories are derived under the condition for no vibration. The simulation result suggests that the proposed method effectively suppresses the vibration even when there exist model uncertainties.

3D Radiation-Hydrodynimics for surface turbulence of Low-mass Stars

  • Bach, Kiehunn;Kim, Yong-Cheol
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.84.3-84.3
    • /
    • 2019
  • We investigate 3D radiation-hydrodynamics (RHD) for surface convection of the solar-type low-mass stars (M = 0.8, 0.9, and 1.0 Msun). The outer convection zone (CZ) of low-mass stars is an extremely turbulent region composed of partly ionized compressible gases at high temperature. Particularly, the super-adiabatic layer (SAL), the top of the CZ is the transition region where the transport of energy changes drastically from convection to radiation. In order to accurately describe physical processes, a realistic treatment of radiation should be considered as well as convection. As a starting model, the initial stratification in the outer envelope calculated using the solar calibrations in the context of the standard stellar theory. When the numerical fluid becomes thermally relaxed, the thermodynamic structure of the steady-state turbulent flow was explicitly collected. In this presentation, we compared thermodynamic properties of turbulent convection of the solar-type low-mass stars.

  • PDF

A Study on the Point-Mass Filter for Nonlinear State-Space Models (비선형 상태공간 모델을 위한 Point-Mass Filter 연구)

  • Yeongkwon Choe
    • Journal of Industrial Technology
    • /
    • v.43 no.1
    • /
    • pp.57-62
    • /
    • 2023
  • In this review, we introduce the non-parametric Bayesian filtering algorithm known as the point-mass filter (PMF) and discuss recent studies related to it. PMF realizes Bayesian filtering by placing a deterministic grid on the state space and calculating the probability density at each grid point. PMF is known for its robustness and high accuracy compared to other nonparametric Bayesian filtering algorithms due to its uniform sampling. However, a drawback of PMF is its inherently high computational complexity in the prediction phase. In this review, we aim to understand the principles of the PMF algorithm and the reasons for the high computational complexity, and summarize recent research efforts to overcome this challenge. We hope that this review contributes to encouraging the consideration of PMF applications for various systems.

Thermal Performance Evaluation Monitoring Study of Transparent Insulation Wall System (투명단열 축열벽 시스템의 열성능 평가 실험 연구)

  • Kim, B.S.;Yoon, J.H.;Yoon, Y.J.;Baek, N.C.;Lee, J.S.
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • Various efforts to combine new high-tech materials with solar system have been progressed nowadays in order to improve the performance of the existing passive solar system. TIM(Transparent Insulation Material) replacing the conventional outer building envelope glazing as well as the wall is good example for this trend. TI integrated wall is a thermal mass wall with a special shaped TIM instead of using typical envelope materials The tested TIM type is a small(diameter 4mm and thickness 50mm) capillary tube of Okalux model and cement brick(density 1500kg/m3). The purpose of this study was to analyze the thermal performance through the actual measurements performed in a test cell. This study was carried out to justify the following issues. 1) the impact of Tl-wall over the temperature variations 2) the impact of mass wall surface absorptance over the transient thermal behavior and 3) the impact of thermal mass wall thickness over the temperature variations. Finally, as results indicated that the peak time of room temperature was shifted about one hour early when absorptance of thermal mass wall changed from 60% to 95% for the 190mm thickness thermal mass wall test case. the temperature difference of both surfaces of thermal mass wall surface showed about $23^{\circ}C$ during a day of March for the 380mm thickness thermal mass wall case. However, the thermal mass wall was over-heated by outside temperature and solar radiation in a day of May the temperature difference of both surfaces of thermal mass wall surface was indicated $10^{\circ}C$ and inside temperature was observed more than average 22C.

A one-dimensional model for impact forces resulting from high mass, low velocity debris

  • Paczkowski, K.;Riggs, H.R.;Naito, C.J.;Lehmann, A.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.6
    • /
    • pp.831-847
    • /
    • 2012
  • Impact from water-borne debris during tsunami and flood events pose a potential threat to structures. Debris impact forces specified by current codes and standards are based on rigid body dynamics, leading to forces that are dependent on total debris mass. However, shipping containers and other debris are unlikely to be rigid compared to the walls, columns and other structures that they impact. The application of a simple one-dimensional model to obtain impact force magnitude and duration, based on acoustic wave propagation in a flexible projectile, is explored. The focus herein is on in-air impact. Based on small-scale experiments, the applicability of the model to predict actual impact forces is investigated. The tests show that the force and duration are reasonably well represented by the simple model, but they also show how actual impact differs from the ideal model. A more detailed three-dimensional finite element model is also developed to understand more clearly the physical phenomena involved in the experimental tests. The tests and the FE results reveal important characteristics of actual impact, knowledge of which can be used to guide larger scale experiments and detailed modeling. The one-dimensional model is extended to consider water-driven debris as well. When fluid is used to propel the 1-D model, an estimate of the 'added mass' effect is possible. In this extended model the debris impact force depends on the wave propagation in the two media, and the conditions under which the fluid increases the impact force are discussed.

Dynamic Response of Non-uniform Beams under a Travelling Mass (주행질량에 의한 불균일 단면보의 동적응답)

  • 김인우;이영신;이규섭;류봉조
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.5
    • /
    • pp.140-147
    • /
    • 2001
  • In this paper, the dynamic response of non-uniform beams subjected to a travelling mass is investigated. Dynamic behaviors of flexible beam structures under a moving mass have been a concern in the design of bridges, ceiling crain in industry, as well as gun barrel fields. Most of studies for moving mass problems have been related to the theoretical dynamic responses of a simple beam model with uniform cross-sections. In some experimental studies, only a few transverse inertia effects due to travelling mass have been studied so far. The intended aim of the present Paper is to investigate the dynamic response of non-uniform beams taking into account of inertia force. centrifugal force, Coriollis force and self weight due to travelling mass. Galerkin's mode summation method is applied for the discretized equations of motion. Numerical results for the dynamic response of non-uniform beams under a travelling mass are demonstrated for various magnitudes and velocities of the travelling mass. In order to verify propriety of numerical solutions, experiments were conducted. Experimental resu1ts have a good agreement wish theoretical Predictions.

  • PDF

Estimation of the Virtual Mass of Conical Nets using Circulating Water Channel (회류수조를 이요한 자루그물의 가상질량 추정)

  • 김현영
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.1
    • /
    • pp.60-65
    • /
    • 2000
  • The virtual mass of net is an important parameter in the analysis and control of net movement in the water. This experiment was performed with the purpose of getting a relation on the quantity of netting and virtual mass of trawl nets using the circulating water channel that can control flow speed. Twelve types of conical nets were examined. Resistance of the conical net at the steady and acceleration state was recorded as text on the personal computer through the tension meter and current meter. The results were obtained as follows ;1. Resistance(R) of the conical net is proportional to the degree of attack angle in the sam e amount of twine material.2. Coefficient of the resistance(Cd)could be defined by the following regression model as a function of Reynolds Number(Re). Cd=0.039Re-0.14743. Resistance(R) is proportional to TSA(Twine surface area) and defined as follows; R=21.398TSA-0.12194. Coefficient of virtual mass(CM) could be calculated by the following first order regression model. CM=37.557U-8.96845. Virtual mass is directly proportional to Volume of net(V) or d/l.

  • PDF

Evolutionary properties of red supergiants with MESA

  • Chun, Sang-Hyun;Jung, Moo-Keon;Kim, Dong uk;Kim, Jihoon;Yoon, Sung-Chul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.42.1-42.1
    • /
    • 2017
  • We investigate the evolutionary properties of red supergiant stars (RSGs), using stellar evolution model of Modules for Experiments in Stellar Astrophysics (MESA). In this study, we calculate models with mass range of 9-39M_sun and several different convection parameters (e.g. mixing length, overshooting, and semiconvection) at SMC, LMC, Milky Way, and M31 metallicities. We compare the calculated evolutionary tracks with observed RSGs in SMC, LMC, Milky Way and M31, and discuss appropriate input physical parameters in model calculation. We find that a larger mixing length parameter is necessary for M31 metallicity to fit the positions of RSGs in H-R diagram, compared to lower metallicity environments. Theoretically predicted numbers of yellow supergiant stars (YSGs) are also compared with the observed population. We find that Ledoux models with semiconvection can better explain the number of YSGs. Finally, we investigate the final radius, final star mass, and final hydrogen envelope mass of RSGs and discussed the their properties as type II-P supernova progenitors.

  • PDF