• Title/Summary/Keyword: 1-aminocyclopropane-1-carboxylate

Search Result 38, Processing Time 0.022 seconds

Effectiveness of Various Pseudomonas spp. and Burkholderia caryophylli Containing ACC-Deaminase for Improving Growth and Yield of Wheat (Triticum aestivum L.)

  • Shaharoona, B.;Jamro, G.M.;Zahir, Z.A.;Arshad, M.;Memon, K.S.
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.8
    • /
    • pp.1300-1307
    • /
    • 2007
  • This study assessed the possible role of different traits in selected plant growth-promoting rhizobacteria (PGPR) for improving wheat growth and yield under natural conditions. Rhizobacteria exhibiting 1-aminocyclopropane-1-carboxylate (ACC)-deaminase activity were isolated and screened for their growth-promoting activity in wheat under axenic conditions. Five isolates belonging to Pseudomonas and one Burkholderia caryophylli isolate that showed promising performances under axenic conditions were selected and characterized for in vitro ACC-deaminase activity, chitinase activity, auxin production, P solubilization, and root colonization. These isolates were then used as inocula for wheat cultivated under natural conditions in pot and/or field trials. Significant increases in root elongation, root weight, tillers per pot, 1,000-grain weight, and grain and straw yields were observed in response to inoculation with PGPR in the pot trials. Inoculation with these PGPR was also effective under field conditions and increased the wheat growth and yield significantly. However, the efficacy of the strains was inconsistent under the axenic, pot, and field conditions. Pseudomonas fluorescens ($ACC_{50}$), which exhibited a relatively high in vitro ACC-deaminase activity, chitinase activity, auxin production, and P solubilization and more intensive root colonization, was the most efficient isolate under the field conditions. Therefore, these results demonstrated that ACC-deaminase activity is an efficient parameter for the selection of promising PGPR under axenic conditions. However, additional traits of PGPR, including auxin production, chitinase activity, P solubilization, and root colonization, are also important for selecting PGPR as biofertilizers.

Cold-Adapted and Rhizosphere-Competent Strain of Rahnella sp. with Broad-Spectrum Plant Growth-Promotion Potential

  • Vyas, Pratibha;Joshi, Robin;Sharma, K.C.;Rahi, Praveen;Gulati, Ashu;Gulati, Arvind
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.12
    • /
    • pp.1724-1734
    • /
    • 2010
  • A phosphate-solubilizing bacterial strain isolated from Hippophae rhamnoides rhizosphere was identified as Rahnella sp. based on its phenotypic features and 16S rRNA gene sequence. The bacterial strain showed the growth characteristics of a cold-adapted psychrotroph, with the multiple plant growth-promoting traits of inorganic and organic phosphate solubilization, 1-aminocyclopropane-1-carboxylate-deaminase activity, ammonia generation, and siderophore production. The strain also produced indole-3-acetic acid, indole-3-acetaldehyde, indole-3-acetamide, indole-3-acetonitrile, indole-3-lactic acid, and indole-3-pyruvic acid in tryptophan-supplemented nutrient broth. Gluconic, citric and isocitric acids were the major organic acids detected during tricalcium phosphate solubilization. A rifampicin-resistant mutant of the strain exhibited high rhizosphere competence without disturbance to the resident microbial populations in pea rhizosphere. Seed bacterization with a charcoal-based inoculum significantly increased growth in barley, chickpea, pea, and maize under the controlled environment. Microplot testing of the inoculum at two different locations in pea also showed significant increase in growth and yield. The attributes of cold-tolerance, high rhizosphere competence, and broad-spectrum plant growth-promoting activity exhibited the potential of Rahnella sp. BIHB 783 for increasing agriculture productivity.

ACC Deaminase Producing Arsenic Tolerant Bacterial Effect on Mitigation of Stress Ethylene Emission in Maize Grown in an Arsenic Polluted Soil

  • Shagol, Charlotte C.;Subramanian, Parthiban;Krishnamoorthy, Ramasamy;Kim, Kiyoon;Lee, Youngwook;Kwak, Chaemin;Sundaram, Suppiah;Shin, Wansik;Sa, Tongmin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.3
    • /
    • pp.213-216
    • /
    • 2014
  • Arsenic is a known hazardous metalloid not only to the animals but also to plants. With high concentrations, it can impede normal plant growth and cause even death of plants at extremely high levels. A known plant response to stress conditions such as toxic levels of metal (loids) is the production of stress ethylene, causing inhibitory effect on root growth in plants. When the effect of various arsenic concentrations was tested to maize plant, the stress ethylene emission proportionately increased with increasing concentration of As(V). The inoculation of two arsenic tolerant bacteria; Pseudomonas grimonti JS126 and Pseudomonas taiwanensis JS238 having respective high and low 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity reduced stress ethylene emission by 59% and 30% in maize grown in arsenic polluted soils. The result suggested the possible use of Pseudomonas grimonti JS126 for phytoremediation of arsenic polluted soils.

Effectiveness of Rhizobacteria Containing ACC Deaminase for Growth Promotion of Peas (Pisum sativum) Under Drought Conditions

  • Zahir, Z.A.;Munir, A.;Asghar, H.N.;Shaharoona, B.;Arshad, M.
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.958-963
    • /
    • 2008
  • A series of experiments were conducted to assess the effectiveness of rhizobacteria containing 1-aminocyclopropane-1-carboxylate (ACC) deaminase for growth promotion of peas under drought conditions. Ten rhizobacteria isolated from the rhizosphere of different crops (peas, wheat, and maize) were screened for their growth promoting ability in peas under axenic condition. Three rhizobacterial isolates, Pseudomonas fluorescens biotype G (ACC-5), P. fluorescens (ACC-14), and P. putida biotype A (Q-7), were selected for pot trial on the basis of their source, ACC deaminase activity, root colonization, and growth promoting activity under axenic conditions. Inoculated and uninoculated (control) seeds of pea cultivar 2000 were sown in pots (4 seeds/pot) at different soil moisture levels (25, 50, 75, and 100% of field capacity). Results revealed that decreasing the soil moisture levels from 100 to 25% of field capacity significantly decreased the growth of peas. However, inoculation of peas with rhizobacteria containing ACC deaminase significantly decreased the "drought stress imposed effects" on growth of peas, although with variable efficacy at different moisture levels. At the lowest soil moisture level (25% field capacity), rhizobacterial isolate Pseudomonas fluorescens biotype G (ACC-5) was found to be more promising compared with the other isolates, as it caused maximum increases in fresh weight, dry weight, root length, shoot length, number of leaves per plant, and water use efficiency on fresh and dry weight basis (45, 150, 92, 45, 140, 46, and 147%, respectively) compared with respective uninoculated controls. It is highly likely that rhizobacteria containing ACC deaminase might have decreased the drought-stress induced ethylene in inoculated plants, which resulted in better growth of plants even at low moisture levels. Therefore, inoculation with rhizobacteria containing ACC deaminase could be helpful in eliminating the inhibitory effects of drought stress on the growth of peas.

Effects of treatment of Enterobacter ludwigii SJR3 on growth of tomato plant and its expression of stress-related genes under abiotic stresses (비생물적 스트레스 환경에서 Enterobacter ludwigii SJR3 처리 시 토마토의 생장과 스트레스-관련 유전자의 발현)

  • Kim, Na-Eun;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.52 no.2
    • /
    • pp.148-156
    • /
    • 2016
  • This study examined effects of Enterobacter ludwigii SJR3 showing a high 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, on growth of tomato plant and its expression of stress-related genes under drought and salt stress. SJR3 strain was inoculated at $10^6cell/g$ soil to 4-week grown tomato plants, and drought and salt stresses were treated. After additional incubation for 1 week, root length, stem length, fresh weight and dry weight of tomato plants treated with SJR3 increased by 37.8, 37.2, 96.8 and 146.6%, respectively compared to those of uninoculated plants in drought stress environment, and they increased by 19.2, 25.4, 19.5, and 105.8%, respectively in salt stress environment. Proline content in tomato leaves increased significantly under stress conditions as one of a protecting substance against stresses, but proline contents in tomato treated with SJR3 decreased by 62.1 and 54.1%, respectively. Relative expression of genes encoding ACC oxidase, ACO1 and ACO4, ethylene response factor genes ERF1 and ERF4, and some other stress-related genes were examined from tomato leaves. Compared to the non-stressed tomato, expressions of all stress-related genes increased significantly in the stressed tomato, but gene expressions in the inoculated tomato were similar to those of no-stressed control tomato. Therefore, E. ludwigii SJR3 may play an important role in mitigating drought and salt stress in plants, and can increase productivity of crops under various abiotic stresses.

Diversity and Functions of Endophytic Fungi Associated with Roots and Leaves of Stipa purpurea in an Alpine Steppe at Qinghai-Tibet Plateau

  • Yang, Xiaoyan;Jin, Hui;Xu, Lihong;Cui, Haiyan;Xin, Aiyi;Liu, Haoyue;Qin, Bo
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.7
    • /
    • pp.1027-1036
    • /
    • 2020
  • Stipa purpurea is a unique and dominant herbaceous plant species in the alpine steppe and meadows on the Qinghai-Tibet Plateau (QTP). In this work, we analyzed the composition and diversity of the culturable endophytic fungi in S. purpurea according to morphological and molecular identification. Then, we investigated the bioactivities of these fungi against plant pathogenic fungi and 1-aminocyclopropane-1-carboxylate deaminase (ACCD) deaminase activities. A total of 323 fungal isolates were first isolated from S. purpurea, and 33 fungal taxa were identified by internal transcribed spacer primers and grouped into Ascomycota. The diversity of endophytic fungi in S. purpurea was significantly higher in roots as compared to leaves. In addition, more than 40% of the endophytic fungi carried the gene encoding for the ACCD gene. The antibiosis assay demonstrated that 29, 35, 28, 37 and 34 isolates (43.9, 53.1, 42.4, 56.1, and 51.5%) were antagonistic to five plant pathogenic fungi, respectively. Our study provided the first assessment of the diversity of culture-depending endophytic fungi of S. purpurea, demonstrated the potential application of ACCD activity and antifungal activities with potential benefits to the host plant, and contributed to high biomass production and adaptation of S. purpurea to an adverse environment.

Characterization of Plant Growth-Promoting Traits of Free-Living Diazotrophic Bacteria and Their Inoculation Effects on Growth and Nitrogen Uptake of Crop Plants

  • Islam, Md. Rashedu;Madhaiyan, M.;Boruah, Hari P.Deka;Yim, Woo-Jong;Lee, Gill-Seung;Saravanan, V.S.;Fu, Qingling;Hu, Hongqing;Sa, Tongmin
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.10
    • /
    • pp.1213-1222
    • /
    • 2009
  • The search for diverse plant growth-promoting (PGP) diazotrophic bacteria is gaining momentum as efforts are made to exploit them as biofertilizers for various economically important crops. In the present study, 17 diazotrophic strains belonging to eight different genera isolated from rice paddy fields were screened for multiple PGP traits and evaluated for their inoculation effects on canola and rice plants. All of the strains tested positive for 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity and production of indole 3-acetic acid (IAA) and ammonia ($NH_3$). Additionally, four of the strains were able to solubilize phosphorus (P), five tested positive for zinc (Zn) solubilization and sulfur (S) oxidation, and eight strains produced siderophores. Based on the presence of multiple PGP traits, 10 strains were selected for inoculation studies. Treatment with Herbaspirillum sp. RFNB26 resulted in maximum root length (54.3%), seedling vigor, and dry biomass in canola, whereas Paenibacillus sp. RFNB4 exhibited the lowest activity under gnotobiotic conditions. However, under pot culture conditions, Paenibacillus sp. RFNB4 significantly increased plant height and dry biomass production by 42.3% and 29.5%, respectively. Canola plants and rhizosphere soils inoculated with Bacillus sp. RFNB6 exhibited significantly higher nitrogenase activity. In greenhouse experiments, Serratia sp. RFNB18 increased rice plant height by 35.1%, Xanthomonas sp. RFNB24 enhanced biomass production by 84.6%, and rice rhizosphere soils inoculated with Herbaspirillum sp. RFNB26 exhibited the highest nitrogenase activity. Our findings indicate that most of the selected strains possess multiple PGP properties that significantly improve the growth parameters of the two plants when tested under controlled conditions.

Screening of Bacterial Strains for Alleviating Drought Stress in Chili Pepper Plants (고추 식물의 건조 스트레스 완화를 위한 미생물 선발)

  • Kim, Sang Tae;Yoo, Sung-Je;Song, Jaekyeong;Weon, Hang-Yeon;Sang, Mee Kyung
    • Research in Plant Disease
    • /
    • v.25 no.3
    • /
    • pp.136-142
    • /
    • 2019
  • Drought stress is considered as one of major abiotic stresses; it leads to reduce plant growth and crop productivity. In this study, we selected bacterial strains for alleviating drought stress in chili pepper plants. As drought-tolerant bacteria, 28 among 447 strains were pre-selected by in vitro assays including growth in drought condition with polyethylene glycol and plant growth-promoting traits including production of 1-aminocyclopropane-1-carboxylate deaminase, indole-3-acetic acid and exopolysaccharide. Sequentially, 7 among pre-selected 28 strains were screened based on relative water content (RWC); GLC02 and KJ40, among seven strains were finally selected by RWC and malondialdehyde (MDA) in planta trials under an artificial drought condition by polyethylene glycol solution. Two strains GLC02 and KJ40 reduced drought stress in a natural drought condition as well as an artificial condition. Strains GLC02 or KJ40 increased shoot fresh weight, chlorophyll and stomatal conductance while they decreased MDA in chili pepper plants under a natural drought condition. However, two strains did not show biocontrol activity against diseases caused by Phytophthora capsici and Xanthomonas campestris pv. vesicatoria in chili pepper plants. Taken together, strains GLC02 or KJ40 can be used as bio-fertilizer for alleviation of drought stress in chili pepper plants.