• 제목/요약/키워드: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

검색결과 45건 처리시간 0.021초

지구성 운동과 MitoQ 섭취가 MPTP로 유도된 파킨슨 질환 생쥐의 병리학적 특징에 미치는 영향 (The effect of endurance exercise and MitoQ intake on pathological characteristics in MPTP-induced animal model of Parkinson's disease)

  • 김동철;엄현섭;오은택;조준용;장용철
    • 한국응용과학기술학회지
    • /
    • 제37권4호
    • /
    • pp.744-754
    • /
    • 2020
  • 본 연구는 파킨슨 질환(Parkinson's disease) 마우스 모델을 대상으로 지구성 운동과 MitoQ 섭취가 뇌의 흑질의 미토콘드리아 기능에 미치는 영향을 확인하는데 목적이 있다. 파킨슨 질환을 유도하기 위해 C57BL/6 수컷 마우스를 대상으로 복강 내 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine (MPTP) 25mg/kg과 흡수를 돕기 위한 probenecid 250mg/kg을 이용하여 주 2회 5주간 총 10회 투여하였다. 실험 집단은 생리식염수를 투여하는 집단(Normal Conrol (NC), n=10), MPTP 투여집단(MPTP Control (MC), n=10), MPTP 투여 + MitoQ 투여집단(MPTP + MitoQ (MQ), n=10), MPTP 투여 + 운동집단(MPTP + Exercise (ME), n=10), MPTP 투여 + MitoQ 투여 + 운동집단(MPTP + MitoQ + Exercise (MQE), n=10) 총 5 집단으로 구성하였으며, 운동집단은 지구성 운동을 실시하였고 MitoQ집단은 점진적으로 250μmol로 늘리면서 5주간 섭취하였다. 연구결과 Rotarod-test에서 MC 집단에 비해 처치 집단은 운동 기능 저하의 개선을 보였다. 또한 MC 집단에 비해 처치 집단은 tyrosine hydroxylase의 수준의 증가와 알파시누클린(α-synuclein) 단백질 축적을 감소시켰다. 그리고 미토콘드리아 생합성에 주요조절 인자인 PGC-1α와 항산화 효소인 Catalase 발현이 MC 집단에 비해 처치 집단에서 증가해 미토콘드리아 기능을 개선했으며, 세포사멸 조절인자인 Bcl-2의 증가와 Bax의 감소를 통해 세포사멸을 완화했다. 따라서 5주간의 지구성 운동과 MitoQ 섭취는 파킨슨 질환에서 나타나는 병리학적 특징을 완화하고 운동기능을 향상시키는데 효과적인 것으로 나타났다.

Glycyrrhizin Attenuates MPTP Neurotoxicity in Mouse and $MPP^+$-Induced Cell Death in PC12 Cells

  • Kim, Yun-Jeong;Lee, Chung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제12권2호
    • /
    • pp.65-71
    • /
    • 2008
  • The present study examined the inhibitory effect of licorice compounds glycyrrhizin and a metabolite $18{\beta}$-glycyrrhetinic acid on the neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the mouse and on the 1-methyl-4-phenylpyridinium ($MPP^+$)-induced cell death in differentiated PC12 cells. MPTP treatment increased the activities of total superoxide dismutase, catalase and glutathione peroxidase and the levels of malondialdehyde and carbonyls in the brain compared to control mouse brain. Co-administration of glycyrrhizin (16.8 mg/kg) attenuated the MPTP effect on the enzyme activities and formation of tissue peroxidation products. In vitro assay, licorice compounds attenuated the $MPP^+$-induced cell death and caspase-3 activation in PC12 cells. Glycyrrhizin up to $100{\mu}M$ significantly attenuated the toxicity of $MPP^+$. Meanwhile, $18{\beta}$-glycyrrhetinic acid showed a maximum inhibitory effect at $10{\mu}M$; beyond this concentration the inhibitory effect declined. Glycyrrhizin and $18{\beta}$-glycyrrhetinic acid attenuated the hydrogen peroxide- or nitrogen species-induced cell death. Results from this study indicate that glycyrrhizin may attenuate brain tissue damage in mice treated with MPTP through inhibitory effect on oxidative tissue damage. Glycyrrhizin and $18{\beta}$-glycyrrhetinic acid may reduce the $MPP^+$ toxicity in PC12 cells by suppressing caspase-3 activation. The effect seems to be ascribed to the antioxidant effect.

파킨슨병 동물 모델을 이용한 양릉천(GB34)의 선조체 내 도파민성신경세포 보호 기전 연구 (Neuroprotective Mechanism of Acupuncture at GB34 for Dopaminergic Neurons in the Striatum of a Parkinson's Disease Mouse Model)

  • 전형준;유태원;김동수;권선오;김승태
    • Korean Journal of Acupuncture
    • /
    • 제32권3호
    • /
    • pp.108-115
    • /
    • 2015
  • Objectives : Acupuncture is frequently used as an alternative therapy for Parkinson's disease(PD) in Korea. Using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced Parkinson's disease mouse model, the present study investigated a possible role of acupuncture stimulation at GB34 in suppressing dopaminergic neuronal death and regulating the phosphorylation of protein kinase B(Akt) in substantia nigra(SN) and striatum(ST). Methods : Eight-week-old male C57BL/6 mice were administered intraperitoneally with 30 mg/kg of MPTP at 24-h intervals for 5 days. Acupuncture stimulation at GB34 or SI3 was performed once a day for 12 days consecutively from the first MPTP injection. After the last acupuncture stimulation, pole test was performed to assess the effect of the acupuncture stimulations. Dopaminergic neuronal survival in the SN and the ST, dopamine transporter( DAT) and caspase-3 expression in the ST were evaluated by immunohistochemistry. The phosphorylations of Akt in the SN and the ST were measured by Western blotting. Results : MPTP administration caused behavioral impairment and dopaminergic neuronal death in the SN and the ST. It also decreased DAT expression and increased caspase-3 expression in the ST. Acupuncture stimulation at GB34 alleviated these MPTP-induced impairments. Moreover, MPTP suppressed Akt phosphorylation in the SN and the ST, whereas acupuncture stimulation at GB34 alleviated the phosphorylation in the SN. Conclusions : These results indicate that acupuncture stimulation at GB34 can inhibit MPTP-induced dopaminergic neuronal death and alleviate the Akt phosphorylation in the SN, suggesting a possible role for acupuncture in the treatment of PD.

Disease model organism for Parkinson disease: Drosophila melanogaster

  • Aryal, Binod;Lee, Youngseok
    • BMB Reports
    • /
    • 제52권4호
    • /
    • pp.250-258
    • /
    • 2019
  • Parkinson's disease (PD) is a common neurodegenerative disorder characterized by selective and progressive loss of dopaminergic neurons. Genetic and environmental risk factors are associated with this disease. The genetic factors are composed of approximately 20 genes, such as SNCA, parkin, PTEN-induced kinase1 (pink1), leucine-rich repeat kinase 2 (LRRK2), ATP13A2, MAPT, VPS35, and DJ-1, whereas the environmental factors consist of oxidative stress-induced toxins such as 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP), rotenone, and paraquat. The analyses of their functions and mechanisms have provided important insights into the disease process, which has demonstrated that these factors cause oxidative damage and mitochondrial dysfunction. The most invaluable studies have been performed using disease model organisms, such as mice, fruit flies, and worms. Among them, Drosophila melanogaster has emerged as an excellent model organism to study both environmental and genetic factors and provide insights to the pathways relevant for PD pathogenesis, facilitating development of therapeutic strategies. In this review, we have focused on the fly model organism to summarize recent progress, including pathogenesis, neuroprotective compounds, and newer approaches.

Autophagy-enhancing and neuroprotective effects of Wonji-Gobon mixture (WGM) in a Parkinson's disease mouse model

  • Lee, Jin-Wook;Kwak, Jin-Young;Koh, Young-Mee;Ahn, Taek-Won
    • Journal of Applied Biological Chemistry
    • /
    • 제61권4호
    • /
    • pp.341-349
    • /
    • 2018
  • The aim of this study was to evaluate autophagy-enhancing and neuroprotective effects of Wonji-Gobon mixture (WGM), a traditional Chinese prescription medication, in Parkinson's disease (PD) mouse models. Our investigation found that WGM increased the expression of both Beclin1 and LC3b-II proteins as measured with western blot in the BV2 cell line; both proteins play a role in autophagy. WGM also increased the autophagy expression as measured by fluorescence-activated cell-sorting analysis in the BV2 cell line. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced PD models, WGM significantly increased the amount of dopamine in a striatum-substantia nigra suspension, produced notable results in the forced swim test, and increased serotonin as measured by high-performance liquid chromatography analysis; these results are indicative of neuroprotective effects. In summary, our findings indicate that WGM treatment has neuroprotective effects that are partially mediated by autophagy enhancement.

Neuroprotection of Dopaminergic Neurons by Hominis Placenta Herbal Acupuncture in in vitro and in vivo Models of Parkinson's Disease Induced by MPP+/MPTP Toxicity

  • Jun, Hyung Joon;Nam, Sang Soo;Kim, Young Suk
    • Journal of Acupuncture Research
    • /
    • 제32권1호
    • /
    • pp.23-36
    • /
    • 2015
  • Objectives : This study was designed to investigate the neuroprotective effects of Hominis-Placenta (HP)on dopaminergic neurons. Methods : We examined the effect of invitro administration of HP against 1-methyl-4-phenylpyridinium( MPP+)-induced dopaminergic cell loss in primary mesencephalic culture and also used behavioral tests and performed analysis in the striatum and the substantia nigra of mouse brain, to confirm the effect of HP on dopaminergic neurons in an invivo 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced PD mouse model. Animals were assigned to four groups: (1) Group 1(vehicle-treatedgroup), (2) Group 2(MPTPonlytreated group), (3) Group 3(MPTP+ saline-treated/$ST_{36}$ group), and (4) Group 4(MPTP+HP-treated/$ST_{36}$ group). HP at $20{\mu}L$ of 48 mg/kg dose was injected at $ST_{36}$ for 4 weeks at 2-day intervals. MPTP in saline was injected intraperitoneally each day for 5 days from the $8_{th}$ treatment of HP. We performed the pole test and rota-rod test on the first and seventh day after the last MPTP injection. To investigate the effect of HP on dopaminergic neurons, we performed analysis in the striatum and the substantia nigra of mouse brain after treatment with HP and/or MPTP. Results : Treatment with HP had no influence on cell proliferation and caused no cell toxicity in $PC_{12}$ and $HT_{22}$ cells. Our study showed that HP significantly prevented cell loss and protected neurites against MPP+ toxicity. Although the invivo treatment of HP herbal acupuncture at $ST_{36}$ showed a tendency to improve movement ability and protected dopaminergic cells and fibers in the substantia nigra and the striatum, it did not show significant changes compared with the MPTP treated group. Conclusions : These data suggest that HP could be a potential treatment strategy in neurodegenerative diseases such as Parkinson's disease.

Sinapic Acid Ameliorates REV-ERB α Modulated Mitochondrial Fission against MPTP-Induced Parkinson's Disease Model

  • Lee, Sang-Bin;Yang, Hyun Ok
    • Biomolecules & Therapeutics
    • /
    • 제30권5호
    • /
    • pp.409-417
    • /
    • 2022
  • Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide, and accumulating evidence indicates that mitochondrial dysfunction is associated with progressive deterioration in PD patients. Previous studies have shown that sinapic acid has a neuroprotective effect, but its mechanisms of action remain unclear. The neuroprotective effect of sinapic acid was assayed in a PD mouse model generated by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) as well as in SH-SY5Y cells. Target protein expression was detected by western blotting. Sinapic acid treatment attenuated the behavioral defects and loss of dopaminergic neurons in the PD models. Sinapic acid also improved mitochondrial function in the PD models. MPTP treatment increased the abundance of mitochondrial fission proteins such as dynamin-related protein 1 (Drp1) and phospho-Drp1 Ser616. In addition, MPTP decreased the expression of the REV-ERB α protein. These changes were attenuated by sinapic acid treatment. We used the pharmacological REV-ERB α inhibitor SR8278 to confirmation of protective effect of sinapic acid. Treatment of SR8278 with sinapic acid reversed the protein expression of phospho-Drp1 Ser616 and REV-ERB α on MPTP-treated mice. Our findings demonstrated that sinapic acid protects against MPTP-induced PD and these effects might be related to the inhibiting abnormal mitochondrial fission through REV-ERB α.

Evaluation of Therapeutic Efficacy using [18F]FP-CIT in 6-OHDA-induced Parkinson's Animal Model

  • Jang Woo Park;Yi Seul Choi;Dong Hyun Kim;Eun Sang Lee;Chan Woo Park;Hye Kyung Chung;Ran Ji Yoo
    • 대한방사성의약품학회지
    • /
    • 제9권1호
    • /
    • pp.3-8
    • /
    • 2023
  • Parkinson's disease is a neurodegenerative disease caused by damage to brain neurons related to dopamine. Non-clinical animal models mainly used in Parkinson's disease research include drug-induced models of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 6-hydroxydopamine, and genetically modified transgenic animal models. Parkinson's diagnosis can be made using brain imaging of the substantia nigra-striatal dopamine system and using a radiotracer that specifically binds to the dopamine transporter. In this study, 18F-N-(3-fluoropropyl)-2β-carboxymethoxy-3β-(4-iodophenyl) nortropane was used to confirm the image evaluation cutoff between normal and parkinson's disease models, and to confirm model persistence over time. In addition, the efficacy of single or combined administration of clinically used therapeutic drugs in parkinson's animal models was evaluated. Image analysis was performed using the PMOD software. Converted to standardized uptake value, and analyzed by standardized uptake value ratio by dividing the average value of left striatum by the average value of right striatum obtained by applying positron emission tomography images to the atlas magnetic resonance template. The image cutoff of the normal and the parkinson's disease model was calculated as SUVR=0.829, and it was confirmed that it was maintained during the test period. In the three-drug combination administration group, the right and left striatum showed a high symmetry of more than 0.942 on average and recovered significantly. Images using 18F-N-(3-fluoropropyl)-2β-carboxymethoxy-3β-(4-iodophenyl) nortropane are thought to be able to diagnose and evaluate treatment efficacy of non-clinical Parkinson's disease.

MPTP로 유발된 파킨슨병 Mouse 모델에 대한 봉약침의 농도의존적 효과 (Dose-dependent Effects of Bee Venom Acupuncture on MPTP-induced Mouse Model of Parkinson's Disease)

  • 전형준;김용석
    • Journal of Acupuncture Research
    • /
    • 제27권5호
    • /
    • pp.59-68
    • /
    • 2010
  • 목적 : 최근 한의학에서 널리 사용되며, 신경계 질환에도 응용되고 있는 봉약침의 농도의존적 효과를 알아보기 위하여, 대표적인 신경 퇴행성 질환인 파킨슨병의 동물모델을 통해 세포보호효과와 세포사멸 및 신경염증 기전을 관찰하였다. 방법 : C57BL/6 mice에 신경독소인 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine(MPTP)를 4번 복강내 주입하여 중뇌의 흑질 도파민 신경세포를 파괴하여 Parkinson 질병동물 모델을 만든 후, 2개의 군에는 마지막 MPTP 투여 2시간 후에 1차, 그 후로 48시간이 지날 때마다 양측 신수에 각각 0.06mg/kg 농도와 0.6mg/kg 농도의 봉약침을 시행하여 총 4회 시술한 후, 도파민 세포를 측정하는 TH 면역조직 화학법을 통해 세포의 보존 정도를 관찰하고, 세포사멸과 관련된 양상을 확인하기 위하여 Caspase 3, 신경염증과 관련된 양상을 확인하기 위하여 iNOS의 발현여부를 면역 조직화학법을 이용하여 관찰하였다. 결과 : 관찰결과 MPTP 투여 후 MPTP 투여군의 흑질의 도파민 세포 수는 감소하였으나 0.6mg/kg 봉약침을 투여한 경우에는 유의성 있게 세포 수가 유지되었다. Caspase-3와 iNOS 발현억제 실험에서 0.6mg/kg 봉약침군은 MPTP 투여군과 0.06mg/kg의 봉약침군과 비교하여 Caspase-3, iNOS 발현을 유의하게 억제하였다. 결론 : 봉약침은 MPTP 투여로 인한 신경세포 손상에 대하여 농도에 따라 세포사멸 기전과 신경염증 기전을 억제함으로 신경세포를 보호하는 것으로 추정되며, 추후 적절한 경혈점 및 최적의 봉약침 농도를 찾는데 지속적인 연구가 필요할 것이다.

황납추출물이 도파민세포 보호효과 및 파킨슨병 행동장애에 미치는 영향 (Cera Flava Improves Behavioral and Dopaminergic Neuronal Activities in a Mouse Model of Parkinson's Disease)

  • 임혜선;문병철;박건혁
    • 한국환경과학회지
    • /
    • 제31권5호
    • /
    • pp.423-429
    • /
    • 2022
  • Parkinson's Disease (PD) is a chronic neurodegenerative disorder caused by the progressive loss of dopaminergic neurons, leading to decreased dopamine levels in the midbrain. Although the specific etiology of PD is not yet known, oxidative stress, inflammation, and subsequent apoptosis have been proposed to be closely related to PD pathophysiology. Cera Flava (CF) is a natural extract obtained from beehives and is isolated through the heating, compression, filtration, and purification of beehives. CF has been used in traditional medicines for its various clinical and pharmacological effects. However, its effects on neurodegenerative diseases are unknown. Therefore, we investigated the effects of CF against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD in mice and explored the underlying mechanism of action. In MPTP-induced PC12 cells, CF protected NADH dehydrogenase activity and inhibited lactate dehydrogenase. In the mouse model, CF promoted recovery from movement impairments, prevented dopamine depletion, and protected against MPTP-induced dopaminergic neuronal degradation. Moreover, CF downregulated glial and microglial activation. Taken together, our results suggest that CF improves behavioral impairments and protects against dopamine depletion in MPTP-induced toxicity by inhibiting glial and microglial activation.