• Title/Summary/Keyword: 1-DOF Model

Search Result 176, Processing Time 0.021 seconds

Linear Model Predictive Control of 6-DOF Remotely Operated Underwater Vehicle Using Nonlinear Robust Internal-loop Compensator (비선형 강인 내부루프 보상기를 이용한 6자유도 원격조종 수중로봇의 선형 모델예측 제어)

  • Junsik Kim;Yuna Choi;Dongchul Lee;Youngjin Choi
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.8-15
    • /
    • 2024
  • This paper proposes a linear model predictive control of 6-DOF remotely operated underwater vehicles using nonlinear robust internal-loop compensator (NRIC). First, we design a integrator embedded linear model prediction controller for a linear nominal model, and then let the real model follow the values calculated through forward dynamics. This work is carried out through an NRIC and in this process, modeling errors and external disturbance are compensated. This concept is similar to disturbance observer-based control, but it has the difference that H optimality is guaranteed. Finally, tracking results at trajectory containing the velocity discontinuity point and the position tracking performance in the disturbance environment is confirmed through the comparative study with a traditional inverse dynamics PD controller.

Study on Seismic Responses for Base Isolated Structure Using Linear 2 DOF System and Its Application for NPP (선형 2자유도계를 이용한 면진구조물의 지진응답 연구 및 원자력발전소 적용)

  • Yoo, Bong;Lee, Jae-Han
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.225-232
    • /
    • 1997
  • A study of effects of design parameters on the seismic responses of base isolated structure is performed to reduce the seismic responses using a linear tw0-degree of freedom system and a lumped-mass model of a nuclear power p;ant(NPP). From the simplified 2 DOF system the optimal isolation frequency being less than 1/10th of the fundamental frequency of superstructure is obtained, and the isolator damping minimizing the peak acceleration depends on superstructure frequency. From the time history analyses for lumped mass model of NPP the optimal damping is calculated as 40% in containment building and 65% in reactor internal structure. Similar results are obtained in 2 DOF system

  • PDF

Exact External Torque Sensing System for Flexible-Joint Robot: Kalman Filter Estimation with Random-Walk Model (유연관절로봇을 위한 정확한 외부토크 측정시스템 개발: 랜덤워크모델을 이용한 칼만필터 기반 추정)

  • Park, Young-Jin;Chung, Wan-Kyun
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.1
    • /
    • pp.11-19
    • /
    • 2014
  • In this paper, an external torque estimation problem in one-degree-of-freedom (1-DOF) flexible-joint robot equipped with a joint-torque sensor is revisited. Since a sensor torque from the joint-torque sensor is distorted by two dynamics having a spring connection, i.e., motor dynamics and link dynamics of a flexible-joint robot, a model-based estimation, rather than a simple linear spring model, should be required to extract external torques accurately. In this paper, an external torque estimation algorithm for a 1-DOF flexible-joint robot is proposed. This algorithm estimates both an actuating motor torque from the motor dynamics and an external link torque from the link dynamics simultaneously by utilizing the flexible-joint robot model and the Kalman filter estimation based on random-walk model. The basic structure of the proposed algorithm is explained, and the performance is investigated through a custom-designed experimental testbed for a vertical situation under gravity.

New bimaxillary orthognathic surgery planning and model surgery based on the concept of six degrees of freedom

  • Jeon, Jaeho;Kim, Yongdeok;Kim, Jongryoul;Kang, Heejea;Ji, Hyunjin;Son, Woosung
    • The korean journal of orthodontics
    • /
    • v.43 no.1
    • /
    • pp.42-52
    • /
    • 2013
  • The aim of this paper was to propose a new method of bimaxillary orthognathic surgery planning and model surgery based on the concept of 6 degrees of freedom (DOF). A 22-year-old man with Class III malocclusion was referred to our clinic with complaints of facial deformity and chewing difficulty. To correct a prognathic mandible, facial asymmetry, flat occlusal plane angle, labioversion of the maxillary central incisors, and concavity of the facial profile, bimaxillary orthognathic surgery was planned. After preoperative orthodontic treatment, surgical planning based on the concept of 6 DOF was performed on a surgical treatment objective drawing, and a Jeon's model surgery chart (JMSC) was prepared. Model surgery was performed with Jeon's orthognathic surgery simulator (JOSS) using the JMSC, and an interim wafer was fabricated. Le Fort I osteotomy, bilateral sagittal split ramus osteotomy, and malar augmentation were performed. The patient received lateral cephalometric and posteroanterior cephalometric analysis in postretention for 1 year. The follow-up results were determined to be satisfactory, and skeletal relapse did not occur after 1.5 years of surgery. When maxillary and mandibular models are considered as rigid bodies, and their state of motion is described in a quantitative manner based on 6 DOF, sharing of exact information on locational movement in 3-dimensional space is possible. The use of JMSC and JOSS will actualize accurate communication and performance of model surgery among clinicians based on objective measurements.

A Study on Simscape based 6DOF Field Robot Simulation Model (Simscape 기반 6자유도 필드로봇 시뮬레이션 모델에 관한 연구)

  • Choi, Seong Woong;Kwak, Kyung Sin;Le, Quang Hoan;Yang, Soon Yong
    • Journal of Drive and Control
    • /
    • v.19 no.2
    • /
    • pp.1-10
    • /
    • 2022
  • Field robots operate in various areas, including construction, agriculture, forestry and manufacturing. Typical tasks of field robots used in various areas include excavation, flattening, and demolition. Such tasks are often accomplished in narrow alleys or indoors. In the case of field robots, there is a limit to working in a small space. Thus, to compensate for these shortcomings, many field robots equipped with Tiltrotators have recently been observed. The advantages of Tiltrotator are improved task efficiency and reduced operating time by reducing unnecessary behavior. We need simulation models that can improve the ability of new people to work and simulate tasks in advance. Thus, in this paper, we developed a simscape-based simulation model and modeling of 6DOF systems for field robots equipped with Tiltrotator. Dynamic modeling of field robot 3D models using Simcape multibody and hydraulic systems of field robots using Simcape Hydraulics were modeled. We applied a PID controller to create a control system that operates along the input angle. Simulation results show that errors occur when comparing input and output angles, but overall, they move along input angles.

Dynamic Interaction Analysis of Train and Bridge According to Modeling Methods of Maglev Trains (자기부상열차의 모델링방법에 따른 열차-교량의 동적상호작용 해석)

  • Jung, Myung-Rag;Min, Dong-Ju;Lee, Jun-Seok;Kwon, Soon-Duck;Kim, Moon-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.2
    • /
    • pp.167-175
    • /
    • 2011
  • The purpose of this study is to examine the impact that change in speed and modeling methods has on maglevs' runnability. The study constructed equations of motion on 4-DOF, 6DOF, and 10-DOF vehicles respectively and carried out numerical analysis, applying 4th Runge Kutta method, in order to run six different model maglev as changing the vehicles speed on the same bridge that had 2000 to 1 deflection. The analysis revealed that maglev's runnability improved as speed was lower and the specific model had higher number of bogey and EMS.

Design of Vehicle Stability Control Algorithm Based on 3-DOF Vehicle Model (3자유도 차량모델 기반 차량 안정성 제어 알고리듬 설계)

  • Chung Taeyoung;Yi Kyongsu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.83-89
    • /
    • 2005
  • This paper presents vehicle stability control algorithm based on 3-DOF vehicle model. The brake control inputs have been directly derived from the sliding control law based on a three degree of freedom plane vehicle model with differential braking. The simulation has performed using a full nonlinear 3-dimensional vehicle model and the performance of the controller has been compared to that of a direct yaw moment controller. Simulation results show that the proposed controller can provide a vehicle with better performance than conventional controller with respect to brake actuation without compromising stability at critical driving conditions.

A Study on the Analysis of the Rebounding Force using the 1-DOF Model (1자유도 모델을 사용한 발사반발력 해석에 관한 연구)

  • Yi, Jong-Ju;Kim, Chwa-Il;Kim, Jae-Ho;Ham, Il-Bae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.398-403
    • /
    • 2012
  • This paper describes about the analysis of firing rebounding force exerted on the launching system supporting structure. The measured high pressure data at the launching tube is used as external force. The maximum firing rebounding force was occurred when the snubber of inner structure contacts the surface of wall in launching tube.

Necessary and Sufficient Conditions for the Existence of Decoupling Controllers in the Generalized Plant Model

  • Park, Ki-Heon;Choi, Goon-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.5
    • /
    • pp.706-712
    • /
    • 2011
  • Necessary and sufficient conditions for the existence of diagonal, block-diagonal, and triangular decoupling controllers in linear multivariable systems for the most general setting are presented. The plant model in this study is sufficiently general to accommodate non-square plant and non-unity feedback cases with one-degree-of-freedom (1DOF) or two-degree-of-freedom (2DOF) controller configuration. The existence condition is described in terms of rank conditions on the coefficient matrices in partial fraction expansions.

A Study on a Two-Degree-of-Freedom Servosystem Incorporating an Observer (관측기를 갖는 2자유도 서보계의 구성에 관한 고찰)

  • Kim, Y.B.
    • Journal of Power System Engineering
    • /
    • v.3 no.1
    • /
    • pp.50-54
    • /
    • 1999
  • In order to reject the steady-state tracking error, it is common to introduce integral compensators in servosystems for constant reference signals. However, if the mathematical model of the plant is exact and no disturbance input exists, the integral compensation is not necessary. From this point of view, a two-degree-of-freedom(2DOF) servosystem has been proposed, in which integral compensation is effective only when there is modeling error for disturbance input. The present paper considers the design problem of 2DOF servosystem incorporating an observer. It is shown that if a state feedback gain and a observer gain satisfy a condition, the integral effect does not appear when modeling error or disturbance input exists. This result means that the servosystem does not behave as a 2DOF servosystem.

  • PDF