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Necessary and Sufficient Conditions for the Existence of Decoupling
Controllers in the Generalized Plant Model

Kiheon Park’ and Goon-Ho Choi*

Abstract — Necessary and sufficient conditions for the existence of diagonal, block-diagonal, and
triangular decoupling controllers in linear multivariable systems for the most general setting are
presented. The plant model in this study is sufficiently general to accommodate non-square plant and
non-unity feedback cases with one-degree-of-freedom (1DOF) or two-degree-of-freedom (2DOF)
controller configuration. The existence condition is described in terms of rank conditions on the

coefficient matrices in partial fraction expansions.
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1. Introduction

The decoupling design in linear multivariable control
systems aims at finding stabilizing controllers that
eliminate interactions between the reference inputs and the
plant outputs. Mathematically, all stabilizing controllers
that make the transfer matrix from the reference input to
the plant output are found to be diagonal such that one
plant output is affected by only one input. Recently, the
application of decoupling design in industrial fields has
been increasing [1]-[4]. A typical example is the load
control of a crane, whose purpose is to minimize the
movement of the pendulum-like load. It is reported [1] that
the decoupling design between (the trolley, orientation)
inputs and (the position, angle) outputs makes it easier to
control the crane by minimizing the pendulum movement
of the load.

A decoupling controller, however, does not always exist.
Existence conditions of decoupling controllers in linear
multivariable systems have been studied by many
researchers. Vardulakis [5] proposed a sufficient condition
wherein a diagonal decoupling controller exists if there is
no unstable pole-zero coincidence in the plant. Necessary
and sufficient conditions for the existence of decoupling
controllers were obtained in various ways. Lin [6], [7]
exploited the internal stability requirement as the
constraints in constructing diagonal and block-diagonal
input—output maps. Youla and Bongiorno [8] took a similar
approach with that of [6] for a diagonal decoupling
problem, but the class of all stabilizing decoupled transfer
matrices was explicitly parameterized, which made it
possible to obtain the optimal H, decoupling controller.
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Gomez and Goodwin [9] adopted an algebraic approach
based on coprime factorizations to treat diagonal and
triangular decoupling designs. In [10], a unifying approach
was suggested to treat diagonal, block-diagonal, and
triangular decoupling problems. These previous studies,
however, considered the conventional model with unity
feedback [5]-[7], [9] or state feedback [10]. In [8], the
unity feedback constraint was loosened, but the arbitrary
non-unity feedback was still not assumed.

In this paper, necessary and sufficient conditions for the
existence of decoupling controllers are presented in the
generalized plant model, which accommodates non-square
plants and non-unity feedback cases with one-degree-of-
freedom (1DOF) or two-degree-of-freedom (2DOF)
configuration. The approach taken in this paper is direct
such that diagonal, block-diagonal, and triangular
decoupling problems are treated in a unified frame. The
existence condition is described in terms of rank conditions
on the coefficient matrices in partial fraction expansions.

Notations — Throughout this paper, only real rational
matrices are considered. Notations C, C, , and C,
denote the complex number plane, the open right half plane
of C, and the closure of C,, respectively. C" denotes
the set of mx1 complex vectors. The notation 7,,(s)
stands for the transfer matrix from @ to b . A rational
matrix G(s) is said to be stable if it is analytic in C, .
The transpose of G(s) is denoted by G'(s), and G"(s)
denotes the 7 -th derivative of G(s). The notations &
and & denote the conjugate and the conjugate transpose
of the vector & , respectively. When X, is a matrix,
diag{X,,X,,--,X,} or diag{X,}., denotes the block-
diagonal matrix whose i—th block diagonal element is
X, ; when the block-diagonal elements are all X, it is
denoted by diag" {X} . The Kronecker product of two
matrices is denoted as G®R. The notation vec(G)
denotes the vector formed by stacking all the columns of
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the matrix G . The Khatri-Rao product of two matrices is
denoted as G (® R and is the matrix whose i -th column
is given by g, ®7, where g, and 7 are the i -th column
of G and i-th column of R, respectively. A convenient
formula is (A® B)(C ® D)=(AC ® BD) . For a diagonal
matrix, vecd (G) denotes the vector formed by stacking
all the diagonal elements of the matrix G. When V is a
diagonal matrix, vec(AVD)=(D'® A)yvec(V)= (D' ®
A)vecd(V) [11]. The notation e, denotes the 1xg row
vector whose elements are all 1, and iff stands for “if and
only if”.

2. Internal Stability and Realizability Condition

The generalized plant model under consideration is
given by the following equations:

el
y u

P,y (s)

The variables # and Y are the control input and the
measured variable, respectively. The variable 7 is an
exogenous input, while the variable Vv is the target
variable. The variables » and Vv are the ones to be
decoupled by the transfer matrix 7,,. In most cases, 7 is
the reference input and Vv is the plant output. The
variables vV and 7 have the same dimension of mx1.
The variables # and Y have the dimensions m, x1 and
m,x1 | respectively. The following assumption is
necessary and sufficient for the existence of a stabilizing
controller [12]. Let Y, denote the characteristic
denominator [13] of the rational matrix P(s) and W¥,"
the monic polynomial that absorbs all the zeros of ¥, in
C

4.

R, (s)

Assumption 1: The general plant block P(s) is free of
hidden modesin C,,and ¥," =¥, ".

The hidden modes of a block whose transfer matrix is
P(s) arise when the characteristic denominator of P(s)
does not include all the internal modes of the block [13].
We consider the polynomial coprime fractional expressions,
P, = A"'(s)B(s) = B,(s)4'(s). There always exist poly-
nomial matrices X(s5),Y(s),X,(s) and Y, (s) such that

XIYIAI—Y_AI—YXIYI_IO2
-B A||B X | |B X|-B 4] |0 I @
with  det X(s)det X ,(s)#0 (adopting proper stable
rational coprime fractions does not affect the remaining
results of this paper). It is well known [14] that the
condition ¥," =¥, " in Assumption 1 is equivalent to

the one wherein B, —P,AYP,, PB,A , and AP, are
stable. The transfer matrix 7,(s) is the one to be

decoupled and is given by the equation below:
T, (s)=F,+F,(- CPzz)il CP, 3

In the following, we define the rational matrix 7(s)
that can be obtained as T, (s) by a stabilizing controller.

Definition 1: A stable rational matrix 7'(s) is said to be
realizable for the given plant P(s) if there exists a
stabilizing controller C(s) that realizes the transfer matrix
T, (s) ofthe system as the matrix 7(s) .

From (1), it follows that v=F r+F,u ; when the
variable V is the plant output, it does not usually contain a
direct term of the reference input ». Hence, in almost all
cases, B, becomes a null matrix and in this case
T=T,=R,(I-CP,)"'CP, . In decoupling design, the
transfer matrix 7 is required to be of full normal rank
together with the diagonal requirement. When £, =0, it
is necessary that m<m, and rank(F,)=m for the full
rank requirement of 7 . Similarly, it is required that
m<m, and rank(P,)=m . Although we presume that
F, =0, we do not assume this to keep the plant model as
general as possible; instead, we assume only the following
rank conditions.
rank(P,) =

Assumption 2: m<m, , m<m, , and

rank(Py)=m .

Next, we consider the class of all stabilizing controllers
characterized by the following formula:

C(s)==(X, - KB)"' (¥, + KA) (4)

where K(s) is an arbitrary real rational stable matrix such
that det(X, —KB) #0 . Inserting this formula to (3) will
obtain the characterized formula for the realizable 7(s) ,
as follows:
T=T,—P,AKAP,

02471 20 »

I, = K, - F,AY P, @)

As can be observed, T is stable since T,, R,4,, AP,
and K are stable. Since rank(FR,)= rank(P,) =m  the
ranks of P,4, and AP, are also 7 ; in this case, it is
known that there exist unimodular matrices ¥, and
V, [15] such that

_ _ Rzo
R,AV,=[R, 0] and V,4P, = 0 (6)

with rank(R,,) = rank(R,,) = m . Therefore, it follows that

[R,
T=T,-F,AKAP, =T,—[R, O]K e O]
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where K =V 'KV,
partition:

. We then consider the following

ot

K=V KV = { .
21 KZZ

11 1212
} ®)

where the dimensions of K, and K, are "MXM and
(m, —m) x(m, —m) , respectively. It then follows that

T= To _R10K11R20 (9)
and hence
K, = R T,R,) ~R,TR,,. (10)

In view of (4) and (10), a stable rational matrix 7' is
realizable for P(s) iff it makes R, T R, — R, TR, stable.
As can be seen, a realizable 7 determines only K, , a
part of g, and the other parts of £ can be obtained by
other criterions of the control system design.

3. Decoupling Problems

In the previous section, we have derived the realizability
condition for a stable rational matrix 7 that guarantees
the existence of a stabilizing controller C . When an
additional requirement is added to the transfer matrix 7',
we need to add this constraint on 7 in solving the
realizability problem. In the following section, we will
show that when a decoupling constraint is added, the
realizability problem can be transformed into the following
standard problem by appropriate vector operations, and this
invokes the introduction of the following standard problem.

Standard Problem for Decoupling Design (SPDD): For a
given mx1 vector #(s) and a given mx7 matrix W(s),
we find a stable 71x1 vector /(s) that makes ¢, stable,
where

¢ =9-Yh. (11)

In the following, we will consider the three decoupling
problems and explain the procedure of getting the SPDD
for a given decoupling constraint. Taking vector operation
on both sides of (10), we obtain @, (s)=¢(s)—
(R, ' ® R, )vecT(s), where

g, =vecK,,, ¢p=vec(R,T,Ry)=(Ry'®R)vecT,. (12)
There is also a need to determine Y (s) and #4(s) from

(R, ' ® R,/ )vecT(s) depending on the decoupling
structures of 7'(s) .

Diagonal Decoupling: We suppose that 7'(s) in (10) is
diagonal. In this case, since (R, '® R )vecT(s)=
(R, ® R, )vecdT(s), it follows that

V=R, ®R, and h=vecd(T). (13)

Triangular Decoupling: We consider only the lower
triangular case. The formula for the upper triangular case
can be obtained by minor modification. We suppose that
the mXm matrix T in (10) is a lower triangular form of
T=[t,], ;=0 for i</ . In this case, we can show
that

vecT(s)=(D ® E) t,(s) , (14)

where ,(s) is the vector formed by stacking columns of
T(s) excluding the upper triangular zero elements. The
constant matrices D and E are defined by D=
[Dmm Dm(m—l) "'Dml] and E= [Emm Em(mf]) "'Eml] , Where
D, is the mxk matrix whose (m—k+1)-th row is e,
and the other rows are zeros and E,, =[0I, ]' whose size
is mxk . Hence, the following holds true:

¥ =(R, ®R,))(D® E)=(R,) D) ®(R,E),
h(s)=1,(s) (15)

Block Decoupling: We suppose that 7' in (10) is a block-

diagonal matrix of the form 7 =diag{T}}" , where T, is

i=1 !

an 7, Xn, matrix and n, +n,+---+n,=m . In this case,
we can show that

vecT(s) = (F ® G)t,(s) (16)

where ,(s) is the vector formed by stacking columns of
T(s) excluding the off-block diagonal zero elements. The
constant matrices F and G are defined by F =
diag{F;}le , F= diag("‘) {en, } ,G= diag{Gi}f:I ,and G, =
(£, 1,--1,], whose size is n,xn’. Hence, the following
holds true:

¥ =(R,y ®R)NF ®G)=(R, F) ®(R,G),
h(s)=1,(s) (17)

4. Solvability Condition of the SPDD

In the previous section, we have shown that the
realizability problems associated with the three decoupling
constraints are reduced to the SPDD. We now determine
the necessary and sufficient condition for the existence of a
solution to the SPDD. Let s,€C,, i=L2,---,v be the
distinct unstable poles of ¢ or ¥ in (11) and
b :maX(Pwa) , where p,; and py, are the
multiplicities of 5, as a pole of ¢ and ¥, respectively.
Since we treat only real rational matrices, S; is also the
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pole of # or W . Then ¢ and W are expressed as
follows:

$=2 >
Y=

. ]( +¢0(S)

" 1( —+¥ (s) (18)

where @,(s) and W¥,(s) are stable. From (11), it follows
that

b =D 8, +d(s)—¥,(s)h(s) (19)
where
— R R(s)
6, -3 LRI s (20)

Since ¢,(s), ¥,(s), and A(s) are stable, @, is stable
iff @, is stable for each, i =1,2,---,v . We now determine
the partial fraction expansion of ¢, at the pole s,. For
ease of presentation, we will consider the case p, =3 .
After straightforward calculation, we get the following
results:

P P, P,
¢.§[ - (S—S,.)3 + (S—S,.)Z + s—s, +¢si0(s) (21)

where

Pl =1 =R, PP =—RHO(s) 41— Rh(s)  (22)
p]l =—(1 / 2)Ri3h(2) (Si) - Rizh“) (Si )+ ’/;1 - Rilh(si) (23)

and ¢, is a stable vector. Since @, is stable, @, is
stable iff p[k~: 0 for k=1,2,3 which results in the linear
equation R A, =7 , with the following:

R 0 0 I h(s,)
R=|R' R 0|, i=|r| and k=] h"(s)
R R R ! (1/2)h?(s.)

24

Hence, the condition that p =0, k=1-3 is satisfied
iff there exists a solution 4 for the _equation R h =7,
and this leads to the condition rank(R )=rank([R:F7]).
We suppose that the above rank condition is met and let

7, =[(m))" ()" 1/2(n})']" be a solution for A such
that

h(s)=n', h"(s)=n and h(s)=n. (25)

We can show that there exists a stable rational vector
h(s) satisfying the above interpolation conditions [16].
Therefore, the equality rank(]?i) = rank([]él. :7]) for each
I is a necessary and sufficient condition for the SPDD to
have a solution. We now state the main theorem.

Theorem 1: Let s,€C,, i=12,-,v be the distinct
unstable poles of ¢ or ¥ in (11) with multiplicity P,
and p,,, respectively, and define p, =max(p,, py,). The
SPDD has a solution iff

rank(R)) =rank([R:7]) for i=L2,v  (26)

where
‘R 0 0 - 0 0] -
e
R’ R0 - - 0 p
L g . . . r
R = ’ 'i. . =l
R . . . 0 : R
2 3 . Pi-1 Pi h
R R . R R 0 .
1 2 3 Pi1 i L ]/; .
| R R° R - R R |

27

Here, r’ and R’ are the coefficients of the term
1/(s—s,)" in partial fraction expansions of ¢ and P,
respectively.

To sum up, checking the existence of a decoupling
controller is reduced to checking the rank conditions in
(26). A realizable decoupling matrix 7T can be constructed
from a stable /(s) satisfying the interpolation constraints
as in (25). Note that R in (27) is a lower triangular block
Toeplitz matrix.

5. Special Cases
5.1 Simple Transmission Zero Case

The results in Theorem 1 completely describe the
existence condition of a decoupling controller in the
generalized plant model. It seems, however, that checking
such existence condition in Theorem 1 may be troublesome
due to the calculation of matrix inverses and the inflation
of matrix dimensions when the dimension of the plant is
high. In the following corollary, we present a simple
existence condition that requires neither matrix inverses
nor inflation of matrix dimensions for the following special
case.

Suppose that R, and R,, in (10) have the distinct
simple transmission zeros s,€C, , i=1—-v, and
§,eC,, i=1-v,, respectively, with s, #5, for any i
and Jj . Then there exist nonzero mx1 vectors & and
4 such that &'R,(s,)=0 and R, (5), =0. Let
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f [fnéz flm]’ 5 =

[ 1,
=[¢,&,..-€,],and (§) =

% 5
Il
:%
&
s

Corollary 1: For the generalized plant model:

1) A diagonal decoupling controller exists iff
rank(é,) = rank[(f,.j Ei,] for j=1—->m i=1-v, and
rank(yﬁ) = rank[,uii 5ﬁ] for j=l->m, i=1->v,.

2) A lower triangular decoupling controller exists iff

rank(&; &y -+ G 1= rankle; &y -6, 851 for J =
2—>m , i=1->v and rank[/’li(j—mH) MGy ,u,-j]
= rank[ll’li(j—m-%-l) o Moy By 5,,] for j=l->m-1
i= l->v,.

3) Consider the block- dlagonal decoupling problem of
the form 7T =diag{T, }, , where T, is an n,xn,

matrix. A block dlagonal decoupling controller exists
iff  rank [é(q +1) Si(g;+2) " 5(,,/”/)] Val’lk[fw/ﬂ) 44
...5(,, +n)gx(q +1)] fOr j—l,z,"',k S q _n +nl+

4 =1,2, n,, i=l-v, and’m”k[ﬂxqﬁn

;Ul(q,n) ’ /’lz(q n; )] rank[,u(q 1) Mgy .'/Lll(ql+nj)é‘i(q/+[,)]
for j= L2k, q =n+n +-+n_ , I, =
,2,,n, , i= 1-v,. In the above, n,=0 by
definition.

Proof: First, we notice that since s, and §, are simple
transmission zeros of R, and R,, , respectively, the
equality in (26) is reduced to rank(R,)=rank([R;:r]),
where 7 and R, are the residues of ¢ and ¥ at s,
and $, , respectively . We can express R, and R, as
follows:

LW M L & N,
=D —+H(s), Ry=) ——+H,(s) (28
i=1 S —S; i=1 S —S;

where H,(s) and H,(s) are stable matrices. We can
show [17] that the residue matrices M, and N, are
expressed as the following equation:

M,=k& and N, =uk (29)
where k, €C” and k eC" are nonzero vectors. We
prove only for s, since the proof for §, is similar.

1) Inserting the equalities in (28) into (13) and using
(29) yields 7, =(R;\(5)'® M, vecTy(s,) = (R, (5)' ®k &)
vecT(s,) = (R (5, @k (I, ®E ecT(s,) = (Rl (5,)'®k,)
vec(£Ty(5)) =(R,\(s)'®k)E and R =R,\(s) @ M,
=R(5) ® (k&) = (R (s)'®k) (I, ® &) . Since
the matrix R, (s,)'®k, has column rank, the
condition rank(R)=rank([R:r]) is equivalent to
rank(l, ® &) =rank([({, ® &7):g]). Since 1, ®
& =diagis, }, j=1—>m, we can conclude that the
rank condition rank(R)=rank([R:r]) is equi-
valent to rank(&,)=rank[$; &,] for j=1—>m,

2) By the similar procedure as in 1), we get
1 =(Ry(s)®k)z, and R =(R,(s)'®k)D, ® §E,)
from (15). Hence, the condition rank(R)=rank([R :r])

is equivalent to rank(D, ® &'E,) =rank([(D, ©
&'E,):E]) . In view of the fact that D, ® (S'E,)
:dlag{[égll ‘§,2 : flm]’ [éz Sglz Sg,m] [fl(m -1 ‘im]

&1}, the above rank condition is equivalent to the
one in 2).

3) By the similar procedure as in 1), we get
F=(R)(s)®K)E and R = (R () k)F @ (£G)
from (17). Hence, the condition rank(R)=rank([R: r])
is equivalent to rank(F ® (&' G)) = rank([(F ® (&' G).

g1 .In VleW of the fact that F ® (&'G) =diag{Z, }/ .
Z dlag ” {[é(q +1) Si(g;+2) " fl(q,m/)]} the above
rank condition is equivalent to the one in 3).

5.2 Square Plant with 1DOF Controller Case

The plant model in (1) is sufficiently general to include
the cases of non-square plants, non-unity feedback, 1DOF,
and 2DOF controller configurations. When we make some
assumptions on the structure of the transfer matrices of
P(s), we obtain more specific results. We suppose that
P, =0, m=m, (square plant case), and P, =1 (1DOF
case). In this case, we can show from (5) that a stable
rational matrix 7'(s) is realizable iff B,"'T , PB,"'TP,,
P,R,'T , and (I+P,PR,'T)P, are stable  and

det(/+P,P,'T)#0 These ﬁve matrices can be
compactly described by the following:

[0sn B ]+ nh T[I P, 1=, (30)
where

_[Omxm 2']' and }322 :[Im 1322']' (31)

Hence, T(s) is realizable iff @, is stable, which leads
to the SPDD in (11) with the following:

g=ved 0,,., P,1,¥Y=[1, P,]® (B,R;,) and
h=vecT 32)
The existence condition of various decoupling

controllers for this special case can be checked by the
procedures in section 3; notice that in this case, we do not
need coprime factorizations.

When a diagonal decoupling T is sought, we can
further parameterize it. From (30), 7 is realizable iff
PZZPOZT and P + P,P,'T P, are stable. For the term
P,P,'T to be stable T must be of the form 7 =A,A,
where A is an arbitrary diagonal stable matrix and
A, =diag{0}", with 6, being the monic polynornial of
the minimal degree such that { i— column of P 2 F, }XH
is stable. Hence, T is realizable iff 2, + P,P,'A,AP, i

stable, which leads to the SPDD with the following:

). Y =(R,)®(B,R'A,) (33)
h(s) = vecd(A(s)) (34)

¢= vec(
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6. Example

Consider the case of the 1DOF controller configuration
with the square plant P,(s) and the non-unity feedback
sensor £ . In this case the transfer matrices in (1) are given
by this equation:

By =0, B, =F(s), By =1, and B, =-FF(s) (35)

Consider the following plant [8] and the non-unity
feedback:

s—1 s—1
s+2 s+2 11
P = and F:{O J (36)
s+2 2(s+2)
; s—1

We can use the formulas in (33) and (34). Since

2(s+2) 1-s
s—1 s+2
P'= , (37)
s+2 s—1
-5 s+2

we obtain A, =diag{s—1,1} after simple calculations.
The vector #(s) and the matrix ¥(s) have a simple pole
at 5, =1. The residue values at s, =1 are obtained as
follows:

n=[00-3-300-6 —6] (38)

’

18 -9 0 0 36 -18 0 O
Rlz[ } (39)

0o 0 -3 -3 0 0 -6 -6

Since  rank(R))=rank([R:1r]1)=2, a  diagonal
decoupling solution exists. Taking a solution for the
equation R h(s))=7 as h(1)=[01]", then a diagonal
solution for T'(s) is parameterized as follows:

(40)

I6s) :{(s—l)zha 0 }

0  1+(s—Dh,

where h, and A, are arbitrary stable rational functions.
The controller C(s) in this case can be obtained from (3).

7. Conclusion

The conditions for the existence of diagonal, block-
diagonal, and triangular decoupling controllers are
obtained for the generalized plant model. These decoupling

problems can be transformed into a solvable standard form
SPDD, and procedures to obtain solutions for SPDD by
solving interpolation problems are explained. The
existence condition of a solution for SPDD is described in
terms of the rank condition on a block Toeplitz matrix
whose elements are the coefficient matrices in partial
fraction expansions.

Possible  future research  works include the
characterization of all solutions /4(s) in SPDD, extending
the results of this paper to the case where the dimensions of
r and Vv are different, and investigating the algebraic
properties of lower-triangular block Toeplitz matrices to
treat the sensitivity problem in checking the rank condition
in (26).
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